7050鋁合金H型截面長(zhǎng)軸鍛件成形工藝優(yōu)化及淬火殘余應(yīng)力消除研究
[Abstract]:With the development of aerospace industry toward lightweight, H-shaped aluminum alloy forgings with longitudinal and transverse internal ribs have been widely used. These components are required to have high dimensional accuracy, better microstructure and streamline distribution, and excellent comprehensive mechanical properties because they bear most of the loads and work in very bad environment. The forming process, heat treatment process and Post-Quenching residual stress relief process of quasi-aluminium alloy components are very important to improve the properties of such alloy forgings.Thermal simulation test, hot die forging production test, mechanical tensile test at room temperature, fracture toughness test, microstructure observation (OM, SEM), residual stress detection test and cold pressing test are used in this paper. The hot die forging process of 7050 aluminum alloy H-section forgings was studied by means of finite element numerical simulation. The effects of solution temperature, quenching medium and quenching transfer time on the second phase particles, grain structure, material strength and fracture toughness in 7050 aluminum alloy specimens were studied. The residual stress of 7050 aluminum alloy components under different quenching conditions was also studied. The influence of different molding process on the residual stress of 7050 aluminum alloy was studied. The conclusions are as follows: (1) The hot compression test of 7050 aluminum alloy was carried out by Gleeble testing machine under the conditions of temperature 300-450 C and strain rate 0.01-10s-1, and the true deformation of 7050 aluminum alloy was obtained. The constitutive relation of 7050 aluminum alloy expressed by Z parameter is established based on the hyperbolic sinusoidal Arrhenius equation. The constitutive model lays a theoretical foundation for the later numerical simulation analysis. (2) Based on the response surface optimization algorithm, the hot die forging worker of 7050 aluminum alloy H-section forging is studied. The process parameters were optimized, and the optimized process parameters were applied to the actual production to obtain the forgings with good forming quality. The forming mechanism of defects such as filling dissatisfaction, streamline crossflow and uneven deformation in hot die forging was analyzed, and the forming process of hot die forging was studied by numerical simulation and response surface methodology (RSM). (3) The effects of different solution temperatures on the microstructure and properties of 7050 aluminum alloy were studied and revealed. Most of the second-phase particles will be gradually incorporated into the matrix with the solution treatment, and the second-phase particles will increase with the solution temperature. As the solution temperature increases, the strength and fracture toughness of the alloy increase first and then decrease, reaching a peak value at 470 C, at which time the tensile strength (_b), yield strength (_0.2) and fracture toughness of the alloy reach a peak value. The effects of quenching transfer time on the microstructure and properties of 7050 aluminum alloy with different quenchants were studied and revealed. The effect of quenching transfer time on the volume fraction of the second phase particles after quenching in different quenchants was obvious, but the morphology of the second phase particles after quenching was affected. The volume fraction of the second phase particles in the aluminum alloy quenched by salt bath quenching in four kinds of quenching media is the smallest, so the mechanical properties after aging are the best. In addition, with the increase of quenching transfer time, the second phase particles in the alloy increase gradually after quenching, and the mechanical properties of the alloy decrease gradually after aging. (5) The effect of quenching transfer time on the mechanical properties of 7050 aluminum alloy H-section forgings quenched by different quenchants was studied and revealed. The residual stress in the surface layer of the forging is tensile stress and that in the core is compressive stress. Among the four quenchants, the value of quenching residual stress in air is the smallest, followed by 20% PAG. The value of quenching residual stress in water and NaCl solution is relatively high. The influence of different cold-pressing processes on the quenching residual stress of 7050 aluminum alloy H-section forgings was studied.The numerical simulation showed that the best cold-pressing process was to press the fillet of the top of the rib at the same time and then cold-pressing the web part of the forgings after the end of the cold-pressing.The optimized die could effectively control the quenching residual stress of the whole section of the forgings and the forgings. The residual stress decreases below 40 Mpa. With the increase of die pressure, the residual stress in the transition fillet of the forging section decreases first and then increases, reaching the lowest value when the die pressure is 3%. The numerical simulation method is used to test the quenching residual stress of specimens with high accuracy.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG319;TG156.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;東輕公司鋁合金板帶生產(chǎn)線項(xiàng)目奠基[J];鋁加工;2008年05期
2 曹躍華;;易開(kāi)蓋鋁合金板[J];輕合金加工技術(shù);1988年10期
3 ;愛(ài)勵(lì)鼎勝航空用鋁合金板項(xiàng)目年底投產(chǎn)[J];輕合金加工技術(shù);2012年10期
4 陳婕爾;王孟君;楊剛;周威;李光耀;;汽車用5182鋁合金板溫沖壓實(shí)驗(yàn)研究及數(shù)值模擬[J];中國(guó)有色金屬學(xué)報(bào);2012年12期
5 Н.Д.Лукашкин;顧景誠(chéng);;深拉儲(chǔ)罐用鋁合金板的生產(chǎn)[J];輕金屬;1989年03期
6 康魯?shù)?楊發(fā)展;佟春明;;鋁合金高速加工關(guān)鍵技術(shù)研究現(xiàn)狀及分析[J];現(xiàn)代制造工程;2014年01期
7 王洪霞,余q;泡沫鋁合金耐火性能的研究[J];鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年01期
8 齊藤莞雨;杜立華;;鋁合金板的深拉加工和燒接[J];輕合金加工技術(shù);1985年08期
9 洪永先;;啤酒罐蓋用鋁合金板的生產(chǎn)方法[J];輕合金加工技術(shù);1987年02期
10 碓井榮喜;梁其第;;包裝用鋁合金板的制法[J];輕金屬;1987年05期
相關(guān)會(huì)議論文 前6條
1 傅玉燦;趙建華;王賢鋒;;帶三缺口鋁合金板斷裂行為的研究[A];疲勞與斷裂2000——第十屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議論文集[C];2000年
2 邢旭東;;鋁合金機(jī)殼的幾種加工方法的特點(diǎn)及其適用性[A];2005年機(jī)械電子學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
3 關(guān)紹康;;鋁合金板帶連鑄連軋節(jié)能新工藝關(guān)鍵技術(shù)研究[A];鋁冶煉節(jié)能新技術(shù)研討會(huì)論文集[C];2011年
4 李偉;;5052H32狀態(tài)鋁合金板帶生產(chǎn)工藝探析[A];2009(重慶)中西部第二屆有色金屬工業(yè)發(fā)展論壇論文集[C];2009年
5 石景;張其林;董震;;鋁合金屋面板承載力的數(shù)值模擬及試驗(yàn)研究[A];首屆全國(guó)建筑結(jié)構(gòu)技術(shù)交流會(huì)論文集[C];2006年
6 葛連福;李宏;楊建華;;鋁合金板和鋅合金板屋面[A];第二屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2002年
相關(guān)重要報(bào)紙文章 前10條
1 記者 陳黎明 通訊員 徐勇文;高端鋁合金板項(xiàng)目落戶鎮(zhèn)江[N];中國(guó)冶金報(bào);2011年
2 黃偉 晏培娟;高端鋁合金板項(xiàng)目在鎮(zhèn)江開(kāi)工建設(shè)[N];新華日?qǐng)?bào);2011年
3 馬鳴圖 路洪洲 畢祥玉;鋁合金汽車板及其應(yīng)用的研究進(jìn)展[N];世界金屬導(dǎo)報(bào);2011年
4 簡(jiǎn)東;我國(guó)鋁合金熱軋產(chǎn)能嚴(yán)重不足[N];廠長(zhǎng)經(jīng)理日?qǐng)?bào);2002年
5 謝達(dá)斐;鋁合金大有“用武之地”[N];中國(guó)有色金屬報(bào);2013年
6 馬鳴圖;鋁合金助力汽車輕量化[N];中國(guó)有色金屬報(bào);2006年
7 文言;歐洲防洪用鋁合金板[N];中國(guó)有色金屬報(bào);2013年
8 彭川寧 李立文;西鋁慶豐擬擴(kuò)建鋁合金板錠坯生產(chǎn)線[N];中國(guó)有色金屬報(bào);2006年
9 葉東蕾;汽車用鋁制品技術(shù)的專利部署[N];中國(guó)知識(shí)產(chǎn)權(quán)報(bào);2007年
10 記者 冼敏 實(shí)習(xí)生 莫冬嬌;南南鋁業(yè)年產(chǎn)20萬(wàn)噸高性能鋁合金板帶型材項(xiàng)目2012年投產(chǎn)[N];南寧日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前7條
1 吳道祥;7050鋁合金H型截面長(zhǎng)軸鍛件成形工藝優(yōu)化及淬火殘余應(yīng)力消除研究[D];重慶大學(xué);2016年
2 張偉;鋁合金板溫成形接觸和摩擦問(wèn)題的研究[D];華中科技大學(xué);2008年
3 郭正華;鋁合金板溫成形關(guān)鍵技術(shù)的研究[D];華中科技大學(xué);2004年
4 楊孚標(biāo);復(fù)合材料修復(fù)含中心裂紋鋁合金板的靜態(tài)與疲勞特性研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
5 閆洪華;5083細(xì)晶鋁合金的熱變形行為和多層結(jié)構(gòu)成形工藝研究[D];哈爾濱工業(yè)大學(xué);2010年
6 蔡春波;1050鋁合金形變和再結(jié)晶過(guò)程中的織構(gòu)演變研究[D];哈爾濱理工大學(xué);2009年
7 付W,
本文編號(hào):2226729
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2226729.html