硼鋼HC1500HS熱沖壓工藝與熱力相變耦合建模仿真
[Abstract]:Using (ultra) high strength steel sheet to make body parts can not only reduce body weight and fuel consumption, but also ensure and improve vehicle safety. It is the best way to realize lightweight and improve collision safety at the same time. The conventional cold stamping process is almost impossible to form. Therefore, how to achieve high-precision stamping of high-strength steel sheet becomes an urgent technical problem to be solved. After austenitizing (900-950 C), it is transferred to the press quickly. After forming with a cooling system, the martensite structure is obtained by cooling and quenching in the die. The tensile strength of the quenched steel sheet is about 1500MPa or even higher. This paper mainly focuses on the engineering scientific problems and technical difficulties of hot stamping forming process of ultra-high strength boron steel. The effects of heating rate, heating temperature and holding time on the high temperature formability of boron steel were studied by the thermal expansion test on Gleeble-3500 thermal simulator. Based on the austenite nucleation and growth theory and considering the effect of heating rate, a unified austenite transformation kinetics model of HC1500HS for boron steel under non-isothermal conditions is established. The model is progressed by using MATLAB. The material constants in the model are solved by the algorithm toolbox, and the unified phase transformation kinetic model can accurately predict the thermal expansion curve and austenite volume percentage of boron steel austenite during non-isothermal heating process. The model considers the process parameters such as heating temperature (800-1000 C), holding time (60-540 s), forming temperature (560-800 C) and die temperature (20-220 C). Based on the response surface model, the influence of each process parameter on the mechanical properties of hot stamping parts is studied, and the process parameters are processed by NSGA-II multi-objective evolutionary algorithm. The optimized results will provide experimental basis and theoretical guidance for the selection of hot stamping process parameters. A set of round table device is designed and manufactured to measure the temperature curves of sheet metal and die during hot stamping and pressure-holding quenching of boron steel. The interfacial heat transfer coefficient between boron steel and the influence of pressure and oxide thickness on the interfacial heat transfer coefficient are studied. The study provides a theoretical basis for calculating the temperature of plate and die during quenching of hot stamping cold die, and provides a data basis for accurately calculating the phase transformation in hot stamping process. The thermal expansion test of boron steel HC1500HS was carried out. The effect of cooling rate and deformation on the transformation process of supercooled austenite during continuous cooling of boron steel HC1500HS was studied. The critical cooling rate of microstructure transformation of the steel was determined. The dynamic Austenite Continuous Cooling Transformation Curve (DCCT curve) of boron steel HC1500HS was worked out. The transformation kinetics model of ferrite and bainite of boron steel HC1500HS under non-isothermal condition is established. The obtained model can well predict the transformation products of boron steel at different cooling rates and deformation degrees. Finite element simulation of microstructure is carried out to obtain the distribution characteristics of sheet temperature, microstructure and Vickers hardness in hot stamping process of car door crashproof beam. The numerical calculation validity of coupled thermo-mechanical phase transformation finite element model is verified by experiment, and the finite element prediction of microstructure evolution process of hot stamping parts is realized to control hot stamping parts. The effects of forming temperature, mold temperature, holding pressure and holding time on the microstructure of hot stamping parts of anti-collision beam were studied by finite element model.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG306
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盈亮;趙榮秀;高天涵;胡平;郭威;;22MnB5硼鋼的氣霧淬火工藝參數(shù)優(yōu)化[J];材料熱處理學(xué)報(bào);2015年10期
2 張志強(qiáng);賈曉飛;趙勇;李湘吉;;高強(qiáng)度硼鋼淬火界面熱交換系數(shù)的實(shí)驗(yàn)與模擬[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2015年04期
3 常穎;李樹(shù)娟;唐行輝;李曉東;王存宇;趙坤民;;22MnB5鋼表面微觀形貌對(duì)界面換熱系數(shù)的影響[J];材料熱處理學(xué)報(bào);2015年03期
4 陳亞洪;張磊;孫曉嶼;王武榮;;熱沖壓用硼鋼B1500HS高溫非等溫變形性能研究[J];上海金屬;2015年01期
5 王夢(mèng)寒;王彥麗;;BR1500HS硼鋼熱沖壓表面涂層研究[J];熱加工工藝;2014年15期
6 Jing Zhou;Bao-yu Wang;Ming-dong Huang;Dong Cui;;Effect of hot stamping parameters on the mechanical properties and microstructure of cold-rolled 22MnB5 steel strips[J];International Journal of Minerals Metallurgy and Materials;2014年06期
7 劉雨陽(yáng);閔峻英;辛立久;金建偉;劉強(qiáng);林建平;;熱沖壓成形工藝參數(shù)對(duì)硼鋼板帽形件回彈影響分析[J];鍛壓技術(shù);2014年03期
8 金偉;王強(qiáng);楊幸東;;熱沖壓主要工藝參數(shù)及對(duì)成形的影響[J];熱加工工藝;2014年01期
9 盈亮;賈治域;常穎;唐行輝;李樹(shù)娟;靳菲;趙坤民;;高強(qiáng)度熱沖壓鋼板強(qiáng)韌性工藝優(yōu)化研究[J];材料科學(xué)與工藝;2013年06期
10 周靖;王寶雨;徐偉力;黃鳴東;易生虎;校文超;;耦合損傷的22MnB5熱變形本構(gòu)模型[J];北京科技大學(xué)學(xué)報(bào);2013年11期
相關(guān)博士學(xué)位論文 前6條
1 王超;高強(qiáng)鋼熱成形接觸導(dǎo)熱和零件力學(xué)性能及工藝優(yōu)化研究[D];華中科技大學(xué);2014年
2 盈亮;高強(qiáng)度鋼熱沖壓關(guān)鍵工藝試驗(yàn)研究與應(yīng)用[D];大連理工大學(xué);2013年
3 譚小紅;細(xì)長(zhǎng)桿多腔模注塑成型工藝多因素多目標(biāo)集成優(yōu)化[D];江蘇大學(xué);2013年
4 張磊;高強(qiáng)度鋼板熱沖壓過(guò)程的模具溫度控制與數(shù)值模擬技術(shù)研究[D];山東大學(xué);2013年
5 賀連芳;硼鋼B1500HS的熱沖壓關(guān)鍵參數(shù)測(cè)試及其淬火性能研究[D];山東大學(xué);2012年
6 寧保群;T91鐵素體耐熱鋼相變過(guò)程及強(qiáng)化工藝[D];天津大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 房曙光;熱沖壓高強(qiáng)鋼高溫防氧化實(shí)驗(yàn)[D];吉林大學(xué);2015年
2 靳菲;第三代汽車(chē)中錳鋼力學(xué)性能與成形參數(shù)探究[D];大連理工大學(xué);2015年
3 劉朝陽(yáng);高強(qiáng)度硼鋼熱沖壓界面熱交換系數(shù)實(shí)驗(yàn)與模擬研究[D];吉林大學(xué);2015年
4 賈迎婷;超高強(qiáng)度厚鋼板熱成形換熱性能研究及工藝參數(shù)優(yōu)化[D];吉林大學(xué);2015年
5 唐行輝;22MnB5鋼熱成形中IHTC求解及影響因素分析[D];大連理工大學(xué);2014年
6 陳靜;奧氏體化溫度與過(guò)冷度對(duì)高強(qiáng)度貝氏體鋼相變的影響研究[D];武漢科技大學(xué);2014年
7 李楠;基于遺傳算法的瞬態(tài)非線(xiàn)性熱傳導(dǎo)反問(wèn)題研究[D];大連理工大學(xué);2014年
8 孫瑩;先進(jìn)高強(qiáng)度鋼板沖壓成形破裂實(shí)驗(yàn)研究與表征分析[D];上海交通大學(xué);2014年
9 范國(guó)文;超高強(qiáng)度硼鋼熱沖壓關(guān)鍵影響因素?cái)?shù)值分析[D];吉林大學(xué);2013年
10 廖錚瑋;高強(qiáng)度鋼板熱成形換熱系數(shù)估算及實(shí)驗(yàn)研究[D];大連理工大學(xué);2013年
,本文編號(hào):2225622
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2225622.html