新型7A56鋁合金半連續(xù)鑄錠組織及其在均勻化過程中的演化
[Abstract]:The pursuit of higher strength grade and better comprehensive properties is the eternal development direction of 7xxx series aluminum alloys. Increasing alloying degree is becoming the main trend of composition design of 7xxx series aluminum alloys. In this paper, a new type of highly alloyed 7A56 aluminum alloy ingot with large size and semi-continuous casting was prepared under industrial conditions. The regularity of non-equilibrium solidified precipitates during homogenization heat treatment was studied systematically, which provided a basis for composition design and heat treatment technology innovation of highly alloyed 7xxx aluminum alloy. The research emphasis of this paper is to study the dissolution law of the non-equilibrium solidified precipitate phase in the ingot and its effect on the matrix structure of aluminum alloy. Based on the microstructure characteristics of the specimens and sizes of ingots, the possible effects of microstructure homogeneity on subsequent experiments were evaluated. The evolution of non-equilibrium solidified precipitates and their effects on the microstructure of aluminum matrix during homogenization were systematically studied. Low mass fraction, high hardness at center and center, low electrical conductivity and large average grain size; low hardness at the edge of ingot, high electrical conductivity and fine average grain size. Relatively speaking, the uniformity of the center and middle of ingot is good. There are a large number of non-equilibrium solidified precipitates in ingot structure, and the second phase at different positions. The second phase mainly consists of low melting point Al-Zn-Mg-Cu-rich phase (T phase), a small amount of Al_2Cu phase (theta phase) and insoluble acicular Al_7Cu_2Fe phase, in which T phase is the main non-equilibrium eutectic phase. The average lattice constant of as-cast 7A56 alloy is 4.051-78 A, the hardness is 102 HV, and the conductivity is 22.8 Ms/m. The single-stage homogenization heat treatment process showed that the temperature affected the transformation of T phase and the limit of solubilization. The T phase could be partially transformed into Al2CuMg phase (S phase) at 380 C. Most of the T phase still retained the original eutectic network structure; the solubilization of T phase was less than 5%. After homogenization heat treatment at 430 C, the T phase could be partially transformed into Al2CuMg phase (S phase). The residual T-phase eutectic structure was dissolved in the interior and the edge became discontinuous. The T-phase was about 50%-60%. Homogenization heat treatment at 470 C resulted in the T-phase directly dissolving and no S-phase transformation was observed. The residual T-phase eutectic structure was completely destroyed and the T-phase solubility was more than 90%. The hardness of the alloy increases, the conductivity decreases, and the lattice constant increases with the increase of the amount of T-phase. The two-stage homogenization heat treatment process of 7A56 aluminum alloy shows that the amount of residual T-phase in the matrix after low temperature treatment (430 C / 12h). In addition, the T-phase can be rapidly dissolved by continuous treatment at high temperature (470 C), and the transformation of T-phase to S-phase has not been observed during the whole process. With the increase of the first treatment temperature, the number of square Al_3Zr particles increased gradually. After 400 C/12h+470 C/24h treatment, the Al_3Zr particles precipitated from the alloy presented spherical or petal shape; after 430 C/12h+470 C/24h treatment, a small amount of square Al_3Zr particles appeared; after 450 C/12h+470 C/2 h treatment, a small amount of square Al_3Zr particles appeared. After 4 h treatment, the proportion of square Al_3Zr particles is obviously increased. The electron diffraction patterns of round and square Al_3Zr particles are the same, indicating that square particles and round particles have similar crystal structures.
【學(xué)位授予單位】:北京有色金屬研究總院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.21;TG292
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;汨羅龍舟鋁業(yè)公司引進(jìn)高技術(shù)均勻化爐[J];輕合金加工技術(shù);2009年03期
2 ;愷撒鋁業(yè)公司購進(jìn)移動式長錠均勻化爐[J];輕合金加工技術(shù);2009年06期
3 ;可改善和提高玻璃均勻化效果的玻璃池爐[J];玻璃與搪瓷;2009年04期
4 毛允靜;董毅;;碳在碳鋼中的均勻化[J];鋼鐵;1989年11期
5 周守則,潘復(fù)生,丁培道,劉晶元,陳家應(yīng);稀土對6063合金均勻化退火組織的影響[J];輕合金加工技術(shù);1989年09期
6 G.Hertwich;張正國;;用于鋁擠壓鑄錠的現(xiàn)代均勻化設(shè)備(上)[J];輕合金加工技術(shù);1987年08期
7 聶存中;霍志文;廖南練;張厚安;;論6063合金鑄錠均勻化問題以及工藝制度研究——建議中小型鋁型材廠改變不均勻化處理的工藝[J];輕合金加工技術(shù);1991年10期
8 王國軍;徐忠艷;;車廂板用變形鋁合金5383熔鑄及均勻化工藝的確定[J];鋁加工;2008年01期
9 周雄多;梁敬鈞;黃崢;;小規(guī)格6060鋁合金鑄棒均勻化生產(chǎn)實(shí)踐[J];企業(yè)科技與發(fā)展;2012年09期
10 聶波;蘇學(xué)常;;過渡元素在鋁中存在形式對其性能的影響[J];輕合金加工技術(shù);1993年02期
相關(guān)會議論文 前8條
1 樊喜剛;蔣大鳴;孟慶昌;;均勻化工藝對Al-Mg-Mn擠壓合金性能的影響[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
2 李滿倉;王侃;姚棟;;B_N理論在連續(xù)能量蒙卡方法產(chǎn)生均勻化群常數(shù)上的應(yīng)用[A];中國核科學(xué)技術(shù)進(jìn)展報告(第二卷)——中國核學(xué)會2011年學(xué)術(shù)年會論文集第6冊(核物理分卷、計算物理分卷、粒子加速器分卷)[C];2011年
3 樊喜剛;蔣大鳴;孟慶昌;;均勻化工藝對Al-Mg-Mn擠壓合金性能的影響[A];2004年中國材料研討會論文摘要集[C];2004年
4 胥國華;張北江;秦鶴勇;趙光普;王林濤;趙長虹;;GH4742合金大錠型均勻化工藝研究[A];動力與能源用高溫結(jié)構(gòu)材料——第十一屆中國高溫合金年會論文集[C];2007年
5 胡永明;施工;楊雪;;堆芯輸運(yùn)計算的均勻化問題[A];全國計算物理學(xué)會第六屆年會和學(xué)術(shù)交流會論文摘要集[C];2007年
6 胡永明;施工;楊雪;經(jīng)滎清;單文志;徐小琳;;輸運(yùn)方程組件均勻化問題[A];第十三屆全國核物理大會暨第八屆會員代表大會論文摘要集[C];2007年
7 李念奎;馮正海;;2524鋁合金鑄錠均勻化過程中相的變化[A];全國第十四屆輕合金加工學(xué)術(shù)交流會論文集[C];2009年
8 馮永平;鄧明香;;周期復(fù)合材料壓電均勻化常數(shù)的數(shù)值模擬[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
相關(guān)博士學(xué)位論文 前6條
1 易斯男;基于均勻化的周期性梁板結(jié)構(gòu)降階及拓?fù)鋬?yōu)化[D];大連理工大學(xué);2015年
2 吳鳴宇;磨粒流小壓差均勻化拋光方法的研究[D];大連理工大學(xué);2016年
3 黃灝;非全反射條件下粗網(wǎng)格等效均勻化參數(shù)的計算及應(yīng)用[D];上海交通大學(xué);2008年
4 李滿倉;連續(xù)能量蒙特卡羅方法組件均勻化研究[D];清華大學(xué);2012年
5 張永v,
本文編號:2217608
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2217608.html