超聲振動—溶質(zhì)對鑄造鋁合金內(nèi)耗的影響研究
[Abstract]:The cast aluminum alloy has a series of advantages such as good fluidity, good thermal conductivity, short casting period, good chemical stability and high specific strength. It has been widely used in various fields of manufacturing industry. The commonly used casting parts such as piston, rotary support, bearing, cylinder block and so on can not fully meet the needs of production and life because of its large vibration and serious noise. The existing technology can only improve these effects and can not satisfy the demand of human being for noise and vibration control fundamentally. So how to improve the damping property of materials and how to improve the effect of noise and vibration reduction has become a research topic. Internal friction technology is an effective means to study the microscopic mechanism of materials, to understand the microscopic properties of materials, to study the internal structure of materials, to understand the physical properties of materials, and to change the composition of materials to make them better. It is of great significance and practical value to meet the needs of production and life. In this paper, the aluminum liquid with four solute elements of Cu,Mg,Zn,Cr was cast under ultrasonic and non-ultrasonic conditions, and the internal friction properties of four different aluminum alloys were tested by multi-function internal friction instrument. The grain size was observed by optical microscope, element content in crystal was analyzed by scanning energy spectrum, heat treatment was carried out, the microstructure of different alloys was studied, and the characteristics of internal friction peak were understood. The mechanism of formation and its changing law are discussed, and the effect of internal friction peak on the grain size, internal structure, phase transformation and impurity of the alloy is studied. The experimental results are as follows: (1) the internal structure of aluminum alloy can be changed to some extent by adding different solute elements. By analyzing the information shown in the internal friction temperature curve, the microscopic mechanism of the alloy material, such as grain boundary size, the existence of precipitation phase or not, can be understood to a certain extent. The existence of impurity elements and the amount of impurity elements are a series of micro information. (2) applying ultrasonic vibration and changing the content of solute elements can change the grain size of the alloy to a certain extent, thus having an effect on the internal friction peak of grain boundary. The grain size of the alloy with ultrasonic is smaller than that without ultrasonic, and the peak temperature and peak height of the corresponding internal friction peak are lower. When the content of solute element is changed, the peak height and peak temperature of grain boundary internal friction peak decrease when the grain size is reduced, whereas the peak value and peak temperature increase. If the content of elements reaches to precipitate, there will be a new precipitation-type internal friction peak. (3) the types of internal friction peaks in four different aluminum alloys are different, and there is only one type of internal friction peak at grain boundary in Al-Cu alloy. There are two kinds of internal friction peaks at grain boundary and supersaturated phase transition in Al-Mg alloy, but there is only one internal friction peak caused by discontinuous precipitation in Al-Zn alloy. There are two kinds of internal friction peaks at grain boundaries and Snoek peaks in Al-Cr alloys. (4) the different internal friction peaks are produced by the formation of 尾 'phase in the demelted mesophase in the supersaturated phase when the recovery temperature is above the recovery temperature. The internal friction peak of phase transformation in Al-Zn alloy is formed by the precipitation of discontinuous precipitation at grain boundary and its development towards grain boundary. The internal friction peaks of grain boundary in Al-Cu, Al-Mg and Al-Cr alloys are all caused by hysteretic slip of grain boundary caused by forced vibration during heating. The internal friction peak of Snoek in Al-Cr alloy is caused by the point defect caused by the increase of non-metallic elements (Co) in the alloy.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG292
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭德友;孔凡霞;;超聲振動擴(kuò)孔糾偏研究[J];制造技術(shù)與機(jī)床;2013年03期
2 馬世佩;;利用超聲振動改善冷卻液效率[J];航空工藝技術(shù);1983年04期
3 黃文郁;朱炳森;;用超聲波清洗機(jī)改裝超聲振動車削裝置[J];機(jī)械開發(fā);1984年04期
4 !ぇ场ぇ支猝陁n;劉作寰;;在撥管過程中應(yīng)用超聲振動[J];鞍山鋼鐵學(xué)院學(xué)報;1984年03期
5 張日升;;超聲振動沖削[J];新技術(shù)新工藝;1984年06期
6 趙繼;王立江;;超聲振動車削表面的波譜分析[J];電加工;1986年04期
7 焦光明;湯銘權(quán);;超聲振動車削快速落刀裝置的研制[J];電加工;1991年03期
8 張建中,于超,申奎東;超聲振動擴(kuò)孔的試驗研究[J];電加工與模具;2000年06期
9 曾忠;微孔的超聲振動鉆削技術(shù)與工藝效果[J];機(jī)械工程師;2001年01期
10 張建中,李秀人,申奎東;超聲振動干式擴(kuò)孔的試驗研究[J];電加工與模具;2004年01期
相關(guān)會議論文 前10條
1 趙繼;王立江;;超聲振動車削表面的波譜分析[A];第五屆全國電加工學(xué)術(shù)年會論文集(特種加工篇與綜合性論文篇)[C];1986年
2 招展;劉冠民;朱樹新;;超聲振動滾壓45~#鋼正交試驗[A];第八屆全國電加工學(xué)術(shù)年會論文集[C];1997年
3 祝錫晶;敘鴻均;;新型功率超聲振動珩磨裝置的研制[A];2005年中國機(jī)械工程學(xué)會年會論文集[C];2005年
4 楊繼先;;陶瓷深孔加工的新方法——超聲振動磨削[A];陜西省電加工學(xué)會第六屆學(xué)術(shù)年會論文集[C];1996年
5 楊繼先;楊素梅;張永宏;;超聲振動車削鋁基復(fù)合材料的研究[A];中國電子學(xué)會生產(chǎn)技術(shù)分會電加工專業(yè)委員會第六屆學(xué)術(shù)年會論文集[C];2000年
6 楊繼先;楊素梅;張永宏;;超聲振動車削鋁基復(fù)合材料的研究[A];陜西省機(jī)械工程學(xué)會電加工分會第七屆學(xué)術(shù)年會論文集[C];2000年
7 陶國燦;王濤;邢棟梁;張建華;;超聲振動輔助銑削表面紋理建模及其摩擦學(xué)性能優(yōu)化[A];第15屆全國特種加工學(xué)術(shù)會議論文集(下)[C];2013年
8 張洪麗;張金環(huán);單紹福;;超聲振動輔助磨削加工表面粗糙度[A];第15屆全國特種加工學(xué)術(shù)會議論文集(下)[C];2013年
9 張勤河;張建華;張琪步;艾興;;超聲振動輔助氣中放電加工實驗分析[A];2005年中國機(jī)械工程學(xué)會年會論文集[C];2005年
10 張勤河;張建華;張琪步;艾興;;超聲振動輔助氣中放電加工實驗分析[A];2005年中國機(jī)械工程學(xué)會年會第11屆全國特種加工學(xué)術(shù)會議專輯[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 呂哲;超聲振動輔助磨料水射流拋光沖蝕機(jī)理和工藝技術(shù)研究[D];山東大學(xué);2015年
2 侯榮國;超聲振動輔助磨料水射流脈動行為及其對加工機(jī)理影響機(jī)制研究[D];山東大學(xué);2015年
3 孫智源;硬脆材料微結(jié)構(gòu)光學(xué)功能表面的超聲振動拋光技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
4 陶國燦;超聲振動輔助銑削魚鱗狀表面成形機(jī)理及表面性能研究[D];山東大學(xué);2016年
5 齊海群;超聲振動拉絲相關(guān)理論及其實驗研究[D];哈爾濱工業(yè)大學(xué);2009年
6 張洪麗;超聲振動輔助磨削技術(shù)及機(jī)理研究[D];山東大學(xué);2007年
7 沈?qū)W會;超聲振動輔助銑削加工技術(shù)及機(jī)理研究[D];山東大學(xué);2011年
8 陸昶;聚合物共混物融合縫結(jié)構(gòu)與性能及超聲振動下融合縫形態(tài)演變及其機(jī)理的研究[D];四川大學(xué);2005年
9 閆鵬;超聲振動輔助磨削—脈沖放電復(fù)合加工及其控制技術(shù)研究[D];山東大學(xué);2009年
10 胡玉景;超聲振動—磨削—脈沖放電復(fù)合加工技術(shù)及其智能控制的研究[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 修曉;復(fù)合超聲振動拉絲的理論與實驗研究[D];哈爾濱工業(yè)大學(xué);2008年
2 耿怡;金屬外圓表面超聲振動光整技術(shù)的研究[D];西安石油大學(xué);2015年
3 劉小超;超聲振動強(qiáng)化攪拌摩擦焊工藝及機(jī)理的研究[D];山東大學(xué);2015年
4 張曼曼;超聲振動輔助TA2純鈦箔板塑性變形行為與微沖裁機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2015年
5 李華;基于超聲減摩原理的氣缸運動副摩擦特性研究[D];哈爾濱工業(yè)大學(xué);2015年
6 李華東;光學(xué)玻璃超聲振動銑磨材料去除及表面質(zhì)量研究[D];哈爾濱工業(yè)大學(xué);2015年
7 劉宇杰;基于超聲振動輔助的Sn2.5Ag0.7Cu0.1RE/C194銅合金的潤濕及釬焊接頭時效特性[D];河南科技大學(xué);2015年
8 黃飛;超聲振動微銑削動態(tài)仿真與實驗分析[D];長春理工大學(xué);2014年
9 汪強(qiáng);Inconel 718超聲振動輔助車削有限元仿真與實驗研究[D];南昌航空大學(xué);2014年
10 賈正首;功率超聲振動珩磨技術(shù)應(yīng)用研究[D];西南石油大學(xué);2012年
,本文編號:2212207
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2212207.html