Mg-Zn-Gd系鎂合金的凝固特性及其力學(xué)性能研究
[Abstract]:Mg-Zn-Gd rare earth magnesium alloys have good mechanical properties at room temperature and excellent creep resistance at high temperature. They have attracted great attention in aerospace, military and automotive industries. They are one of the most promising heat-resistant magnesium alloys at present. The solidification characteristics, microstructure control and the relationship between microstructure and mechanical properties of Mg-Zn-Gd alloys are still poorly understood and systematically studied in this paper. Secondly, the free solidification paths of Mg-Zn-Gd ternary alloys with different cooling rates and alloy compositions were studied by free solidification method, and the prediction model of the free solidification paths of Mg-5.5Zn-2.0Gd-0.6Zr (w) ternary alloys was established. Finally, the free solidification paths of Mg-5.5Zn-2.0Gd-0.6Zr (w) were designed and prepared. The main conclusions are as follows: (1) A modified Yokoyama self-diffusion coefficient model is proposed, and the self-diffusion coefficients of pure metal elements such as Mg, Zn, Gd, Al, Si are calculated and determined. The calculation model of solute liquid diffusion coefficients of multicomponent alloys is established. By calculating the solute liquid diffusion coefficients of Al-Si-Mg, Al-Cu-Mg and Al-Fe-Ni alloys, it is found that the calculated results are in good agreement with the experimental values, which proves that the model is reasonable and credible, and the solute liquid phase of Mg-5.5Zn-2.0Gd (wt%) alloy is determined. (2) The microstructure evolution of Mg-xGd (x=1.38, 2.35, 4.38 wt%) alloy under different solidification conditions was studied. The results show that the solidified microstructure of Mg-1.38 Gd and Mg-2.35 Gd alloys is cellular morphology in the wide pull-out rate range (10-200 micron/s), and the critical growth rate of CELL-DENDRITE transition calculated by Kurz-Fisher model is not found. Dendritic structure appears near vc-d. It is found that this is related to the lower alloy concentration and higher temperature gradient. For Mg-4.38G D alloy with higher G D content, dendritic structure appears in the alloy when v=100~200 micron/s. In addition, the intercellular spacing (lambda) and the growth of Mg-xGd alloy at the conditions of G=20~30K/mm and v=10~200 micron/s are determined by nonlinear fitting. The quantitative relationship between the long parameters (G, v) is found to be consistent with the predicted values of Trivedi model. (3) The solidification microstructure and micro-segregation behavior of Mg-xGd (x = 1.38, 2.35, 4.38 wt%) alloy are determined. The results show that the predicted solidification path and micro-segregation behavior of Mg-Gd binary alloy are consistent with those of Scheil model. Experimental results show that the tensile properties of directionally solidified Mg-2.35Gd alloy at room temperature are significantly higher than those of freely solidified Mg-2.35Gd alloy at the same cooling rate. (4) The evolution of solidification microstructure of Mg-5.5Zn-xGd (x=0,0.8,2.0,4.0wt%) alloy under different solidification conditions was studied for the first time. It was found that the critical growth rate of CELL-DENDRITE transition (vc-d) decreased with the increase of solute Gd content. (5) The mechanical properties of Mg-5.5Zn-xGd (x=0,0.8,2.0,4.0 wt%) alloy at room temperature were studied under different solidification parameters. The tensile strength of Mg-5.5Zn-xGd alloy increased with the growth rate when the alloy composition was constant. The tensile strength of Mg-5.5Zn-2Gd alloy increases at first and then decreases with the increase of Gd content at the same growth rate. It is found that the tensile strength of Mg-5.5Zn-2Gd alloy is the best at room temperature. (6) The free solidification path of Mg-5.5Zn-2.0Gd (wt%) alloy is studied. When the cooling rate is greater than or equal to 7.71K/s, the eutectic phase of the alloy is alpha(Mg)+I(Mg_3Zn_6Gd). A computational model for the free solidification path of multi-component alloy is established, which takes into account the factors of liquid diffusion and cooling rate. The calculated results are in good agreement with the experimental results. On the contrary, the higher the content of Gd and the lower the cooling rate, the easier W (Mg3Gd2Zn3) phase will be formed. The mechanical properties show that the tensile strength, yield strength and elongation of Mg-5.5Zn-2.0Gd alloy increase with the increase of cooling rate, and the tensile fracture surface of Mg-5.5Zn-2.0Gd alloy increases with the increase of cooling rate. The intergranular fracture characteristics under the alloy changed to transgranular fracture characteristics at higher cooling rate. It was found that besides grain refinement, the formation of more quasicrystalline I (Mg_3Zn_6Gd) phase enhanced the strength of the alloy. (7) Mg-5.5Zn-2.0Gd-0.6Zr (wt%) sand mold casting magnesium alloy was designed and prepared. The microstructure and mechanical properties of the alloy during heat treatment have been studied systematically. The as-cast microstructure of the alloy consists of a (Mg), a (Mg) + W (Mg_3Zn_3Gd_2) eutectic at grain boundary and I (Mg_3Zn_6Gd), Mg3Gd and a (Zr) phase in the crystal. After solution treatment, the eutectic of a (Mg) + W (Mg_3Zn_3Gd_2) in the as-cast microstructure disappears mostly and the residual W (Mg_3Zn_3Gd_2) phase disappears. At the same time, the rod-like Zn_2Zr_3 phase is formed in the alloy matrix. After T6 heat treatment, the rod-like beta_1'phase and the disc-like beta_2' phase precipitate in the alloy matrix. The analysis of the strengthening mechanism at room temperature shows that the tensile strength and yield strength of the alloy at room temperature are 189 MPa and 98 M due to the combination of solution strengthening and aging strengthening. Compared with ZK51A industrial alloy, the tensile strength at room temperature and yield strength of T6 alloy are increased by 14.29% and 26.81% respectively. Meanwhile, the high temperature mechanical properties of the alloy are obviously better than those of ZK51A industrial alloy.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG146.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張勇;周云軍;陳國(guó)良;;快速發(fā)展中的高熵溶體合金[J];物理;2008年08期
2 梁秀兵;魏敏;程江波;張偉;徐濱士;;高熵合金新材料的研究進(jìn)展[J];材料工程;2009年12期
3 郭娜娜;孫宏飛;牛占蕊;朱海云;李忠麗;;優(yōu)異特性的集合體——多主元高熵合金[J];新材料產(chǎn)業(yè);2011年01期
4 H·W·羅森伯格,吳之樂(lè);鈦的合金化理論與實(shí)踐[J];稀有金屬合金加工;1973年S1期
5 謝自能;熊易芬;;Au-Pd-Fe-Al合金的電阻變化特性[J];貴金屬;1981年01期
6 Б.А.Колачев,王國(guó)宏;論鈦合金的合金系[J];稀有金屬材料與工程;1985年01期
7 張陟;;捔-鋰系合金最近的開(kāi)發(fā)動(dòng)向[J];材料導(dǎo)報(bào);1989年02期
8 劉世程,浜口由和,桑野壽;Fe-Cr-Mo,Fe-Cr-W合金中的過(guò)渡R相[J];金屬學(xué)報(bào);1990年06期
9 秦敬玉,邊秀房,王偉民,S.I.Sijusarenko,徐昌業(yè),馬家驥;鋁鐵合金熔體的微觀多相結(jié)構(gòu)[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);1998年02期
10 王玲玲,黃維清,鄧輝球,李小凡,唐黎明,趙立華;準(zhǔn)晶合金形成規(guī)律的探討[J];稀有金屬材料與工程;2003年11期
相關(guān)會(huì)議論文 前10條
1 郭偉;梁秀兵;陳永雄;王林磊;;高熵合金的研究現(xiàn)狀與發(fā)展趨勢(shì)[A];2011年全國(guó)青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
2 李宏祥;呂昭平;王善林;李承熏;;工業(yè)原材料制備的塊體非晶鋼合金的形成能力及性能研究[A];2008中國(guó)鑄造活動(dòng)周論文集[C];2008年
3 朱志光;張勇;;TiZrNb系高熵合金的組織結(jié)構(gòu)和力學(xué)性能[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
4 張志;王朝龍;余東滿(mǎn);陳春玲;;快速凝固法制備釹基合金磁性材料[A];第八屆21�。ㄊ�、自治區(qū))4市鑄造學(xué)術(shù)年會(huì)論文集[C];2006年
5 鄭炳銓;馮以盛;陳士仁;;非共晶感溫合金的熔斷溫度[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
6 李宏祥;呂昭平;王善林;李承熏;;塊體非晶鋼合金的研究應(yīng)用現(xiàn)狀與展望[A];2009中國(guó)鑄造活動(dòng)周論文集[C];2009年
7 張玉平;張津徐;吳建生;梅品修;;Cu-Mn-Zn系合金的色度研究[A];第十屆全國(guó)相圖學(xué)術(shù)會(huì)議論文集[C];2000年
8 尹付成;蘇旭平;張平;李智;;Pr-Al合金系的熱力學(xué)模型[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
9 馬麗娜;王蓉;郭可信;;急冷合金Al_5Ir中準(zhǔn)晶態(tài)的研究[A];第五次全國(guó)電子顯微學(xué)會(huì)議論文摘要集[C];1988年
10 莊應(yīng)烘;;銅基C_u-C_o-C_r-S_i電極合金的研究[A];中國(guó)電子學(xué)會(huì)生產(chǎn)技術(shù)分會(huì)第五屆金屬材料及熱處理年會(huì)論文集(一)[C];1994年
相關(guān)重要報(bào)紙文章 前2條
1 楊燕群;謝佑卿:探尋合金“類(lèi)基因”序列的征程[N];科技日?qǐng)?bào);2005年
2 夏德宏;鎂合金的冶金特性與合金化原理[N];中國(guó)有色金屬報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 高偉;Zr-Cu合金快速凝固過(guò)程中微觀結(jié)構(gòu)演化及動(dòng)力學(xué)性質(zhì)的模擬研究[D];燕山大學(xué);2015年
2 韓建超;TiB_2及Ni對(duì)Ti-48Al-2Cr-2Nb合金凝固組織與性能的影響[D];哈爾濱工業(yè)大學(xué);2016年
3 劉少軍;Mg-Zn-Gd系鎂合金的凝固特性及其力學(xué)性能研究[D];西北工業(yè)大學(xué);2016年
4 宋文杰;Mg-Ni-Y合金的相形成機(jī)制與吸放氫性能研究[D];西北工業(yè)大學(xué);2016年
5 薛云龍;Laves相Cr_2Nb/Ti復(fù)相合金的顯微組織及力學(xué)性能研究[D];西北工業(yè)大學(xué);2016年
6 宋西貴;合金熔體脆性的廣義性研究[D];山東大學(xué);2009年
7 鄧輝球;二元合金系表面聚集的計(jì)算機(jī)模擬研究[D];湖南大學(xué);2001年
8 王玉青;合金熔體的黏滯特性研究[D];山東大學(xué);2007年
9 白延文;合金熔體局域結(jié)構(gòu)及其遺傳性研究[D];山東大學(xué);2014年
10 余瑾;合金熔體電子傳輸性質(zhì)的溫度行為及其與凝固相關(guān)性研究[D];合肥工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 朱建波;高熵合金的制備及合金元素對(duì)組織與性能的影響[D];吉林大學(xué);2013年
2 魏文博;Mg-10%Ca-6%Zn合金力學(xué)及腐蝕性能研究[D];長(zhǎng)安大學(xué);2015年
3 劉用;Al_xCrCuFeNi_2高熵合金的組織結(jié)構(gòu)及摩擦學(xué)性能研究[D];太原理工大學(xué);2016年
4 張清;稀土元素對(duì)Mg-Al合金性能影響的第一性原理研究[D];中北大學(xué);2016年
5 雷文斌;合金元素對(duì)高熵合金組織與性能的影響[D];東北大學(xué);2014年
6 陳玉鶴;高飽和磁化強(qiáng)度FeSiBM系非晶納米晶軟磁材料制備研究[D];燕山大學(xué);2016年
7 劉萬(wàn)理;熱處理對(duì)SPS燒結(jié)Ti-24Nb-4Zr-8Sn合金力學(xué)與電化學(xué)腐蝕行為的影響[D];昆明理工大學(xué);2016年
8 馬崢;稀土基多相合金磁熱效應(yīng)研究[D];電子科技大學(xué);2016年
9 吳朋慧;AlCoCrCuFeMoNi系多元高熵合金的微結(jié)構(gòu)與性能相關(guān)性研究[D];江蘇科技大學(xué);2016年
10 黃金角;合金化及物理場(chǎng)對(duì)AZ91鎂合金凝固組織和力學(xué)性能的影響[D];南昌航空大學(xué);2016年
,本文編號(hào):2211303
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2211303.html