基于機(jī)器視覺的齒輪檢測與測量系統(tǒng)的研究
[Abstract]:Gear products play an important role in many fields, so it is necessary to carry out rigorous testing of the products. The manual testing method has some shortcomings, such as large error, slow speed, and the detection data can not be stored in real time. It is not suitable for real-time on-line testing in the production process. The system includes image acquisition, image processing and image recognition. The main contents are as follows: 1. Put the gear to be detected on the conveyor belt of two-track annular pipeline. When the gear moves on the conveyor belt to the position of photoelectric sensor in the dark box, the image of the gear is acquired and transmitted to the computer. 2. The machine vision software HALCON is used to pre-process the acquired image. First, the acquired color gear image is transformed into gray image by gray-scale transformation. Then, the gray image is processed by anisotropic diffusion filtering, which can remove the image noise while retaining and sharpening the image. 3. In the process of gear detection, the dark box in the machine vision system can reduce the influence of the external environment illumination on the system, so the smoothed image is segmented by the fastest threshold algorithm. The sub-pixel edge of the gear is detected by Canny operator and bilinear interpolation after selecting the region of interest. In the process of identifying different types of gears, a method combining template matching and image pyramid search is proposed, in which the profile of the center hole of the gear at sub-pixel level is taken as the shape. After template matching, an affine transformation is performed to make the matching result show. Experiments show that this method can classify different types of gears quickly and accurately. 5. After obtaining the sub-pixel edge, the sub-pixel is classified. The area and center of the gear are obtained by Green's theorem. Then, the circle curve is fitted by the least square method based on Tukey, and the radius length of each circle is obtained.
【學(xué)位授予單位】:聊城大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG86
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尹紅敏;葛廣英;肖海俊;張如如;;基于Halcon的指針式儀表的讀數(shù)[J];現(xiàn)代電子技術(shù);2016年17期
2 趙巧敏;;機(jī)器視覺行業(yè)投資分析報(bào)告[J];機(jī)器人技術(shù)與應(yīng)用;2015年05期
3 孫少紅;袁華;張彤;;常用的亞像素邊緣檢測方法的對比研究[J];大眾科技;2014年04期
4 黃靜;夏雷;王毅強(qiáng);王友釗;;線陣CCD測厚系統(tǒng)改進(jìn)光斑中心定位算法的研究[J];浙江理工大學(xué)學(xué)報(bào);2013年04期
5 謝佩軍;;基于互信息與差影法的塑料齒輪缺陷檢測研究[J];制造業(yè)自動化;2012年23期
6 張五一;張繼超;侯遠(yuǎn)韶;楊揚(yáng);;機(jī)器視覺系統(tǒng)中鏡頭的選擇[J];中原工學(xué)院學(xué)報(bào);2011年06期
7 楊濱峰;李亞文;趙杰;;物體形狀檢測的亞像素細(xì)分算法綜述[J];計(jì)算機(jī)與數(shù)字工程;2011年11期
8 李艷麗;龔源源;;一種結(jié)合Canny算子和數(shù)學(xué)形態(tài)學(xué)的邊緣檢測算法[J];商丘職業(yè)技術(shù)學(xué)院學(xué)報(bào);2011年05期
9 吳玲玲;王星;陳靖;武繼安;張維光;;基于圖像處理的莫爾條紋測量的CCD亞像素標(biāo)定[J];應(yīng)用光學(xué);2011年05期
10 徐正洲;蔡昀哲;朱曉彥;;基于機(jī)器視覺的工業(yè)檢測[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2011年19期
,本文編號:2209153
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2209153.html