稀土鈰Ce改性A7N01鋁合金耐腐蝕性能研究
[Abstract]:Based on the standard composition of A7N01 aluminium alloy, five kinds of A7N01-T5 aluminium alloys with different rare earth contents were designed by means of self-designed composition range of alloy elements and gradient doping method of trace Ce. The microstructure of as-cast and extruded bars were observed, the grain size was compared, and the precipitated phase composition was analyzed. The local corrosion behavior of RE-Al alloy under stress-free condition was studied by stripping corrosion, open circuit potential, potentiodynamic polarization and AC impedance. The cracking process of RE-Al alloy C-ring stress corrosion was monitored by electrochemical noise technique. The results show that Ce can refine A7N01 aluminum obviously. The grain size of the alloy affects the distribution and morphology of the second phase and refines the grain size from 183.7 micron to 54.2 micron. Because of the small solid solubility of Ce element in the aluminum alloy, it is segregated at the grain boundary and forms a brittle crystalline phase containing Ce. It is dispersed along the grain boundary after being crushed during rolling because of its large size and easy to distort the lattice. As a result, a large number of dislocations are formed, the movement of grain boundaries is hindered, the undercooling of the grain is increased, the nucleation rate of the grain is increased, and a layer of active film is formed on the surface of the formed grain, which hinders the continuous growth of the grain and refines the grain. Compounds reduce the segregation of Ce at grain boundaries, weaken the supercooling effect of this component, and the alloy microstructure begins to coarsen gradually. Moreover, the rare earth crystalline phase is hard and brittle, which acts as a crack source during plastic deformation, causing crack growth and seriously reducing the toughness and elongation of the alloy. The basic mechanical properties of gold are all the best. The tensile strength, yield strength and hardness of C4 alloy with 0.3% Ce addition are only inferior to those of C1 alloy because of fine grain strengthening and second phase strengthening, but the dislocation around these phases will be heavily plugged due to the precipitation and pinning effect of rare earth containing Ce. In A7N01 aluminum alloy, the potential of_phase is lower than that of the aluminum matrix, which is used as anode to dissolve and corrode seriously. The boundary precipitation phase transformation is coarser and more discontinuous, and it is difficult to form continuous coarse chains, which narrows the PFZ of the alloy, effectively prevents the corrosive active channel and reduces the corrosion sensitivity. At the same time, Ce has a greater affinity with H, can adsorb and dissolve H, reduce the accumulation of H atoms in the defect, and thus reduce the SCC sensitivity. The corrosion resistance of RE-Al alloy under stress-free condition is improved effectively by raising the grade of denudation from EC + to PC, increasing the open-circuit potential from -0.9227V to -0.9003V, decreasing the corrosion rate of polarization curve from 0.940mm/a to 0.235mm/a, and increasing the pitting resistance from 4394_.cm2 to 16260.cm2. Time domain spectroscopic analysis showed that after soaking in NaCl-HCl solution for 62 hours, the noise peaks of C1 and C5 alloys appeared regularly with equal time intervals, and the step of the regularity became more obvious and regular with the time prolonging, while the PDS curves were observed. At the same time, the experimental results were verified by the stereo morphology of each time period. The stress corrosion cracking of A7N01 rare earth aluminum alloy was mainly caused by anodic dissolution, while hydrogen was mainly caused by hydrogen. The common result of brittle acceleration.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 關(guān)躍強(qiáng),黃光孫;鋁合金鍍銀經(jīng)驗(yàn)談[J];材料保護(hù);2002年12期
2 劉延輝;李寶成;;鋁和鋁合金的特點(diǎn)及鋁合金的強(qiáng)化[J];黑龍江科技信息;2007年04期
3 王漢林;姚層林;;淺談鋁合金表面處理技術(shù)[J];建材與裝飾(上旬刊);2008年06期
4 劉紅軍;牛金來(lái);;影響鋁合金鉻化膜質(zhì)量的因素[J];涂裝與電鍍;2009年01期
5 胡敏英;時(shí)君偉;高聰敏;;鋁合金表面防腐處理技術(shù)研究[J];鋁加工;2010年02期
6 宋成樸,范愛(ài)齡,韋永德;用化學(xué)法對(duì)鋁合金表面擴(kuò)滲稀土元素的初步探討[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);1985年S4期
7 王素琴;宋國(guó)松;張全生;許興利;;鋁合金上電鍍新工藝[J];材料保護(hù);1993年01期
8 左尚志,李荻;國(guó)內(nèi)外鋁合金剝蝕研究的現(xiàn)狀[J];材料保護(hù);1994年12期
9 閻國(guó)平;鋁合金表面化學(xué)氧化的應(yīng)用[J];材料保護(hù);1997年05期
10 何慧華;如何識(shí)別鋁合金制品的優(yōu)劣[J];標(biāo)準(zhǔn)計(jì)量與質(zhì)量;1999年04期
相關(guān)會(huì)議論文 前10條
1 陳松祺;;鋁合金表面處理“特種工藝”簡(jiǎn)介[A];2005年上海市電鍍與表面精飾學(xué)術(shù)年會(huì)論文集[C];2005年
2 李凌杰;歐孝通;陳德賢;張?jiān)?雷驚雷;張勝濤;;鋁合金表面硅基防護(hù)膜的制備及表征[A];2008年全國(guó)腐蝕電化學(xué)及測(cè)試方法學(xué)術(shù)交流會(huì)論文摘要集[C];2008年
3 閆秀;;鋁合金表面處理中的清潔生產(chǎn)技術(shù)[A];首屆泛珠三角先進(jìn)制造技術(shù)論壇暨第八屆粵港機(jī)電工程技術(shù)與應(yīng)用研討會(huì)論文專輯[C];2004年
4 黃桂橋;;鋁合金在青島海域的腐蝕行為[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
5 彭成允;孫智富;張春艷;陳康;趙瑋霖;;鋁合金表面含氟自潤(rùn)滑層成分分布與組織形貌[A];海峽兩岸第二屆工程材料研討會(huì)論文集[C];2004年
6 郭麗;丁培道;蔣斌;;6061鋁合金加工技術(shù)在國(guó)內(nèi)的研究進(jìn)展[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會(huì)暨《材料導(dǎo)報(bào)》編委會(huì)年會(huì)論文集[C];2007年
7 萬(wàn)善宏;張廣安;王立平;薛群基;;鋁合金表面沉積類金剛石復(fù)合薄膜的摩擦學(xué)性能[A];TFC’09全國(guó)薄膜技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2009年
8 白基成;郭永豐;張海龍;劉晉春;;鋁合金表面微弧放電陶瓷化改性新技術(shù)——原理、應(yīng)用和國(guó)內(nèi)外研究現(xiàn)狀與動(dòng)向[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
9 白基成;郭永豐;張海龍;趙家齊;劉晉春;;鋁合金表面陶瓷化技術(shù)的原理及在電加工中的應(yīng)用[A];制造業(yè)數(shù)字化技術(shù)——2006中國(guó)電子制造技術(shù)論壇論文集[C];2006年
10 白基成;郭永豐;張海龍;劉晉春;;鋁合金表面微弧放電陶瓷化改性新技術(shù)——原理、應(yīng)用和國(guó)內(nèi)外研究現(xiàn)狀與動(dòng)向[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)第11屆全國(guó)特種加工學(xué)術(shù)會(huì)議專輯[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 林風(fēng);日開(kāi)發(fā)新型材料 營(yíng)造靚麗車型[N];中國(guó)有色金屬報(bào);2006年
相關(guān)博士學(xué)位論文 前8條
1 王珊珊;時(shí)效處理及表面磨削對(duì)7xxx系鋁合金局部腐蝕行為的影響[D];哈爾濱工業(yè)大學(xué);2015年
2 申志康;鋁合金回填式攪拌摩擦點(diǎn)焊顯微組織及力學(xué)性能研究[D];天津大學(xué);2014年
3 黃若雙;鋁合金及銅腐蝕的示差圖像研究[D];廈門大學(xué);2006年
4 李玉蘭;離子束處理鋁合金的腐蝕和疲勞性能[D];重慶大學(xué);2003年
5 丁紅燕;鋁合金和鈦合金在雨水/海水環(huán)境下的腐蝕與磨損交互作用研究[D];南京航空航天大學(xué);2007年
6 余先濤;鋁合金表面激光熔覆Ni基合金及其摩擦學(xué)特性研究[D];武漢理工大學(xué);2005年
7 曹發(fā)和;高強(qiáng)度航空鋁合金局部腐蝕的電化學(xué)研究[D];浙江大學(xué);2005年
8 何歡;鋁合金/不銹鋼熱絲TIG熔-釬焊接頭組織與性能研究[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王增勇;雙疏鋁合金表面制備及其性能研究[D];大連海事大學(xué);2015年
2 王恒;船用5383鋁合金在模擬海水中的腐蝕行為研究[D];寧夏大學(xué);2015年
3 劉馨;2024鋁合金電解著黑色工藝及膜層性能研究[D];沈陽(yáng)理工大學(xué);2015年
4 李正斌;鋁合金A-TIG焊接頭裂紋分析及工藝性能研究[D];江蘇科技大學(xué);2015年
5 劉揚(yáng);某鋁合金人行天橋的結(jié)構(gòu)分析[D];南昌大學(xué);2015年
6 劉冰洋;富鎂涂層對(duì)LY12鋁合金點(diǎn)蝕的抑制作用研究[D];北京化工大學(xué);2015年
7 王曉;鋁合金表面處理工業(yè)廢渣制備氫氧化鋁阻燃劑研究[D];北京化工大學(xué);2015年
8 方,
本文編號(hào):2203482
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2203482.html