摻雜鎢連軋棒材的微觀組織及有限元分析
[Abstract]:Doped tungsten has many advantages such as high melting point, low expansion coefficient and good sag resistance at high temperature. It is widely used as cathode material for lighting, gas discharge light source and electron tube. By hot deformation method, it is an important step to obtain fine doped tungsten rod with excellent microstructure and properties. Although the traditional rotary forging process can obtain a large amount of deformation, the microstructure after processing is not uniform and energy consumption is large. The rolling of Tungsten bar by three high rolling mill has weak bite ability, complex structure and complicated maintenance. In this paper, the microstructures and stress and strain fields of doped tungsten bars with diameter 18.5mm are studied by using the continuous rolling process of a high speed continuous rolling mill with ten passes. The doped tungsten sintered bar with diameter 18.5mm has been continuously rolled into doped tungsten rods with diameter 9mm. The microstructures of the doped tungsten bars and the stress and strain fields in the continuous rolling process have been studied in this paper. The microstructure of four, six and ten passes of doped tungsten bar cross section was observed by metallographic microscope and scanning electron microscope (SEM). The results show that after continuous rolling of doped tungsten bar, the microstructure is significantly refined, and the more passes, the more the grain refinement. After ten times of continuous rolling, the average diameter of the grain is about 3 ~ 5 渭 m, the sintered hole is compressed or even closed, and the grain size in the edge of cross section of doped tungsten rod is smaller than that in the center region. After partial continuous rolling, regional grain growth occurs in the doped tungsten rods, and there are more potassium bubbles and potassium tubes in the interiors. The microhardness of doped tungsten rod increases with the increase of continuous rolling pass. The four, six and ten passes continuous rolling process of doped tungsten rod was simulated by Abaqus software. The mesh deformation, temperature field, stress field, strain field and rolling force were analyzed. The results show that the temperature of the top center of the cross section of doped tungsten rod is the highest and the surface temperature is the lowest during the continuous rolling process. In the deformation zone, the equivalent stress and residual equivalent stress on the surface of the rolling piece are the largest, the concentric part decreases, the equivalent stress and the residual equivalent stress at the center are the smallest, and the equivalent strain in the center of the workpiece with four passes and six passes continuous rolling is the largest and decreases to the surface. After ten times of continuous rolling, the distribution of equivalent strain is the highest on the surface and the lowest at the center. The residual equivalent strain decreases gradually from the surface to the center of the workpiece, and the minimum appears at about 2 / 5R, and then increases gradually. The region where the minimum value of residual equivalent strain appears is consistent with the abnormal grain growth region of the doped tungsten rod after continuous rolling, which is the main reason for the abnormal growth of the doped tungsten rod grain. With the increase of continuous rolling pass, the rolling force fluctuates gradually in each pass steady state rolling stage, which indicates that the rolling stability is decreased. By analyzing the variation of residual stress, residual strain and rolling force at different temperature and friction coefficient, it is found that the rolling force and the residual stress of the rolling piece decrease gradually with the increase of the temperature and speed of the first rolling. The residual strain, residual stress, residual strain and rolling force increase with the increase of friction coefficient.
【學(xué)位授予單位】:煙臺(tái)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.411;TG335.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李南駒;徐英鴿;張宇;;基于數(shù)字圖像處理的鎢合金塑性變形分析[J];熱加工工藝;2016年24期
2 李萍;華睿;薛克敏;梁辰;宋群超;吳玉程;;鎢及其合金塑性加工的研究進(jìn)展[J];稀有金屬材料與工程;2016年02期
3 夏克農(nóng);;劇烈塑性變形:不僅是晶粒細(xì)化(英文)[J];材料與冶金學(xué)報(bào);2015年04期
4 傅崇偉;黃江波;魏修宇;;純鎢棒材鍛造和退火工藝研究[J];硬質(zhì)合金;2015年02期
5 夏福中;汪明樸;李周;魏海根;陳暢;賈延琳;雷前;;摻雜鎢帶退火過程中的組織與織構(gòu)演變[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
6 劉顯東;張永安;李錫武;李志輝;;B95оч鋁合金的熱變形行為研究[J];稀有金屬;2012年05期
7 武淑珍;王鐵虎;;摻雜鈷對(duì)摻雜鎢絲抗震性能的影響[J];中國(guó)鎢業(yè);2012年04期
8 劉強(qiáng)強(qiáng);池成忠;許樹勤;侯丙盛;;軋制變形率對(duì)鎢板晶粒尺寸與硬度的影響[J];鍛壓裝備與制造技術(shù);2012年01期
9 劉桂榮;王玲;王廣達(dá);楊海兵;;鎢合金軋制變形強(qiáng)化的組織與性能研究[J];兵器材料科學(xué)與工程;2010年05期
10 張廣政;章靜;余同仁;楊宵;閻軍;;軋件扭轉(zhuǎn)對(duì)高速線材軋制穩(wěn)定性的影響[J];安徽工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
相關(guān)博士學(xué)位論文 前2條
1 張曉新;鎢合金的塑性加工對(duì)組織和性能的影響研究[D];北京科技大學(xué);2016年
2 岳重祥;棒線材軋制過程多場(chǎng)耦合數(shù)值模擬與工藝優(yōu)化[D];大連理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 劉強(qiáng)強(qiáng);粉末冶金純鎢板軋制工藝的控制與優(yōu)化[D];太原理工大學(xué);2012年
2 夏福中;摻雜鎢帶的退火行為研究[D];中南大學(xué);2012年
3 王鐵虎;高性能抗震摻雜鎢絲的制備研究[D];江西理工大學(xué);2011年
4 葉恒;旋鍛法制備WCu合金線材的工藝研究[D];西安理工大學(xué);2010年
5 高星;純鎢的劇烈塑性變形研究[D];南京理工大學(xué);2008年
6 肖寧寧;不銹鋼線棒材六道次冷連軋軋制過程有限元仿真與優(yōu)化[D];山東大學(xué);2008年
7 李茂;DEFORM和Marc平臺(tái)下棒線材熱連軋過程的數(shù)值模擬[D];大連理工大學(xué);2006年
8 任俊威;棒材粗軋過程的有限元模擬和晶粒尺寸預(yù)報(bào)[D];燕山大學(xué);2005年
,本文編號(hào):2202342
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2202342.html