金屬等離激元微結(jié)構(gòu)的光俘獲操縱和表面增強拉曼散射研究
[Abstract]:The abundant optical properties caused by the excitation, coupling and propagation of sub-wavelength metal Micro-Nanostructures and their surface plasmons are one of the hotspots in the fields of energy science, information science, material science and their cross-cutting. Designs of novel functional metal plasmon microstructures for different applications have emerged in an endless stream, providing a large number of effective solutions for the manipulation of photons and the regulation of light-matter interactions, and exhibiting high-efficiency photoelectric conversion, enhancement of optical nonlinear effects, and nano-integrated optical chips. Focusing on the scientific problem of how to modulate the excitation and propagation of electromagnetic waves in media by using plasmon microstructures, this paper studies the mechanism and structure design scheme of high-efficiency broadband photon capture using artificial metal microstructures, and explores the optical absorption and local field enhancement synergy of plasmon excitations. The first part of this paper is the theoretical design and experimental fabrication of a two-dimensional disordered colloidal crystal-based metal micro-nano structure, so as to achieve wavelength-tunable ultra-wideband, incident angle and polarization-insensitive plasmon resonance perfect absorber. Aiming at the problems of quantum well photodetectors in infrared optical coupling efficiency, a kind of optical coupler for multilayer quantum wells operating in very long wave infrared (14-16 micron) band was designed by using the coupling effect of hybrid surface plasmon resonance mode and microcavity mode. The optical coupling efficiency was greatly improved. In the third part of this paper, we combine nanoimprinting technology with improved nano-lithography technology and metal nanoparticle deposition technology to fabricate a series of metal nanoparticle arrays with large area and high homogeneity, and explore their regulation on surface-enhanced Raman scattering (SERS) effect. Based on the self-organization technique of large-plane homogeneous disordered two-dimensional colloidal crystals, a broadband plasmon-photon perfect absorption structure is designed and fabricated. The structure is obtained by disorderly arrangement of two-dimensional colloidal crystals on a flat gold film and deposition of different thickness of gold film. The total absorption properties of the structure are derived from plasma exciton coupling. The excitation of the combined Fabry-Perot resonance mode and the magnetic plasmon cavity mode can produce a wider band of perfect absorption than the disordered plasmon-photon absorber in the ordered structure system because the Bloch eigenmode is suppressed by the disordered lattice. The hybrid arrangement of colloidal microspheres utilizes the influence of geometrical size on the regulation of optical absorption to achieve the perfect absorption of near-infrared ultra-wideband effectively. At the same time, due to the symmetry of a single resonant unit and the disordered arrangement of the system, the near-infrared full absorber exhibits the characteristics of polarization-independent and wide-angle response. The designed system is based on mature metal film deposition and colloidal crystal self-assembly method. It has the advantages of low preparation process requirements, cost control and high repeatability. By changing the size of microspheres and the thickness of metal film, the ultra-wideband total absorber can be operated in the full band from light to infrared. 2. Quantum well infrared detectors (QWIPs) have significant advantages over conventional HgCdTe infrared detectors in fabricating large-area, low-power, low-cost, high-uniformity and high-sensitivity focal plane array (FPA) imaging systems. However, for n-type QWIPs, due to the selection of inter-band transitions, Quantum well layers can not be coupled to vertically incident electromagnetic waves. In this paper, an efficient metal optical coupling structure for multilayer quantum well photodetectors in very long wave infrared band is proposed. The coupling structure supports two resonant modes, hybrid surface plasmon resonance and microcavity resonance, by adjusting the two modes. Coupling effectively enhances the photon density of states in the active region of quantum wells, especially the Ez component of the electric field, and improves the optical coupling efficiency of QWIPs. The coupling efficiency factor (_) of the Ez distribution in the layers reaches 6. In addition, the metal microstructures we designed exhibit the applicability of large incident angles (up to 40 degrees) and the dependence on the incident polarization. Based on the numerical simulation, we propose a combination of molecular beam epitaxy and standard light. A series of large-area, highly homogeneous metal nanoparticle arrays have been fabricated as SERS substrates based on nanoimprinting and improved nano-ball lithography. Firstly, we introduce the fabrication of SERS substrates with high-performance infrared photodetectors. A SERS substrate consisting of gold/PC nano-column arrays based on alumina template nanoimprinting and metal nano-particle deposition techniques was prepared. The optical properties of gold/PC nano-column arrays were adjusted by adjusting the structural parameters and the thickness of gold plating on AAO template. This kind of gold/PC nano-column array is actually situated on the elastic PC film, so the external force distortion and stretching will provide another degree of freedom for SERS. Secondly, we introduce an improved nano-ball lithography technique. A quasi-three-dimensional metal mesh SERS substrate with a large number of sub-nanometer ultra-small gaps has been fabricated. The substrate has a Raman enhancement factor of 1.5 *108 and can detect R6G molecules in aqueous solutions with concentrations as low as 1 *10-9M. The relative standard deviation (RSD) of the SERS strength distribution with spatial position is only 10.5%, showing excellent SERS performance. In addition, we have fabricated a large area of silver particle arrays on silicon wafers based on phase separation lithography. The arrays exhibit high homogeneity and Raman enhancement of 1.64 *108. In addition, compared with traditional methods, the method of preparing SERS substrate by phase separation lithography is simple, low-cost and has obvious yield. Industry application prospects.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TB383.1;TG111
【相似文獻】
相關(guān)會議論文 前3條
1 肖宜明;張丫丫;張超;徐文;;中空金屬納米球等離激元以及表面等離激元模式研究[A];中國真空學(xué)會2012學(xué)術(shù)年會論文摘要集[C];2012年
2 劉海;孫秀冬;;金屬納米線對中磁等離激元與電介質(zhì)多層膜表面波耦合作用的研究[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
3 張超;張瑞;江嵩;張力;高洪營;張曉磊;陳留國;廖源;徐文;董振超;;石墨表面卟啉分子的電致發(fā)光特性研究[A];中國真空學(xué)會2012學(xué)術(shù)年會論文摘要集[C];2012年
相關(guān)重要報紙文章 前2條
1 張華念;美國科學(xué)家發(fā)現(xiàn)新型“隱身術(shù)”[N];大眾科技報;2005年
2 記者 吳長鋒;中科大發(fā)現(xiàn)源于納米天線效應(yīng)的新電光現(xiàn)象[N];科技日報;2010年
相關(guān)博士學(xué)位論文 前10條
1 高峰;金屬微納結(jié)構(gòu)中光與等離激元的耦合效應(yīng)及其調(diào)控[D];南京大學(xué);2011年
2 薛紅杰;納米薄膜中的電磁波與原子團簇中的等離激元研究[D];湖南大學(xué);2016年
3 胡昌寶;金納米結(jié)構(gòu)等離激元透鏡的聚焦特性的研究[D];南京大學(xué);2017年
4 嚴蕾;等離激元誘導(dǎo)光催化反應(yīng)的微觀機制[D];中國科學(xué)院大學(xué)(中國科學(xué)院物理研究所);2017年
5 吳仍來;納米電子體系中的等離激元[D];湖南大學(xué);2015年
6 張楊;分子發(fā)光與納腔等離激元共振之間的相互調(diào)制研究[D];中國科學(xué)技術(shù)大學(xué);2010年
7 劉正奇;新型金屬/介電復(fù)合等離激元微結(jié)構(gòu)的光透射與光全吸收效應(yīng)研究[D];南京大學(xué);2013年
8 秦將;超快等離激元動力學(xué)及其控制[D];長春理工大學(xué);2017年
9 吳騰飛;非對稱等離激元納米結(jié)構(gòu)共振模型及傳感特性研究[D];天津大學(xué);2013年
10 耿鋒;掃描隧道顯微鏡誘導(dǎo)分子發(fā)光中的脫耦合調(diào)控研究[D];中國科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 陸海洋;基于自組織等離激元微結(jié)構(gòu)的增強透射與光吸收效應(yīng)研究[D];南京大學(xué);2014年
2 孫任;基于局域等離激元的金屬光致熒光的增強與調(diào)控研究[D];南京大學(xué);2016年
3 譚穎玲;三維金屬顆粒等離激元黑體材料[D];南京大學(xué);2016年
4 馮鵬;等離激元納米結(jié)構(gòu)/材料設(shè)計和檢測[D];南京大學(xué);2016年
5 魚艷琴;二維原子點陣的等離激元的性質(zhì)[D];湖南大學(xué);2016年
6 馬平平;非對稱納米結(jié)構(gòu)中的等離激元振蕩和誘導(dǎo)透明現(xiàn)象[D];陜西師范大學(xué);2016年
7 武霽;有限長度的準一維體系的等離激元[D];湖南大學(xué);2013年
8 辛旺;在緊束縛納米結(jié)構(gòu)中的等離激元[D];湖南大學(xué);2013年
9 朱立昊;等離激元結(jié)構(gòu)在薄膜硅太陽能電池中的應(yīng)用[D];南京大學(xué);2013年
,本文編號:2189575
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2189575.html