C、Mn配分對TRIP效應(yīng)鋼組織與性能影響的研究
[Abstract]:Advanced High Strength Steel-AHSS with low development cost and good performance can improve the lightweight, reduce exhaust emissions and reduce environmental pollution while ensuring the safety and comfort of automobiles. Quenching and Partitioning-QP process can produce a martensite+residual Austenite. The carbon partition process in QP process can improve the stability of austenite and keep it to room temperature (retained austenite), while retained austenite can transform into martensite under stress. Absorbing a large amount of impact energy can significantly improve the safety of automobiles. At the same time, martensite provides ultra-high strength for QP steel. When replacing low strength automotive materials with QP steel, the thickness of automotive parts can be reduced and the lightweight degree of automobiles can be effectively improved. The microstructure of the test steel was observed and analyzed by optical microscope (OM) and scanning electron microscope (SEM) with the same parameters of C and Mn partitioning process. The content and distribution of C and Mn in retained austenite were measured by X-ray energy dispersive spectrometer (EDS). The mechanical properties of the test steel were tested by universal tensile machine and X-ray irradiation. The content of retained austenite was measured by X-ray diffraction (XRD). The effect of tensile stress on the mechanical stability of retained austenite in TRIP steel was studied. The following results were obtained: (1) Carbon diffused to the interface of a'/gamma when martensite transformation was completed after salt bath quenching, resulting in the unequal chemical potential of Fe atoms at the interface of a'/gamma on the martensite side and on the austenite side, which is the migration of a'/gamma interface. As the driving force is supplied, the migration of Fe atoms on the martensite side is lower than that on the austenite side. During the subsequent partitioning process, the migration of Fe atoms to the austenite side is determined by the partition temperature. (3) The content of C and Mn in retained austenite far exceeds the original content of the two elements in the test steel, which proves that the Mn matching in this test is proved. At the same time, through the analysis of EDS scanning results, the composition design of low carbon medium manganese high strength steel containing copper which is more conducive to the composition of Mn in QP process is proposed. (4) The change trend of Strength-plasticity product is related to the tensile strength and the ratio of increase or decrease of elongation after fracture, and the elongation after fracture is more likely to affect the Strength-plasticity product. (5) Ferromagnetic phenomena appeared on the fracture surface of the test steel after tensile fracture. Because the test steel contains alpha-Fe (i.e. ferrite and martensite), and alpha-Fe shows ferromagnetic characteristics below Curie temperature. During tensile process, ferrite and martensite magnetic domains are not destroyed in order to resist tensile stress, and these magnetic domains begin to be destroyed. Arranged in the same direction, two groups of elementary magnets with different polarities are formed at both ends of the fracture surface, which resist the material being destroyed by mutual attraction. (6) The transformation rate and mechanical stability of retained austenite and the stress-induced dislocation proliferation, plugging and dislocation absorption of retained austenite (Dislocation Absorptio) The n by Retained Austenite-DARA effect is related to the transformation rate of retained austenite and the mechanical stability of retained austenite are obviously divided into three stages with the increase of strain. The stress plays a different role in the different stages of the transformation from retained austenite to martensite.
【學(xué)位授予單位】:山東建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG142.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Effect of Microstructure in TRIP Steel on Its Tensile Behavior at High Strain Rate[J];Journal of Iron and Steel Research(International);2003年01期
2 周玉,郭英奎,李冬波,段小明;Effects of load mode on mechanical properties of ZrO_2(2Y)/TRIP steel composites[J];Transactions of Nonferrous Metals Society of China;2003年05期
3 ;Effects of Holding Temperature for Austempering on Mechanical Properties of Si-Mn TRIP Steel[J];Journal of Iron and Steel Research(International);2004年06期
4 ;Effect of Silicon and Manganese on Mechanical Properties of Low-Carbon Plain TRIP Steel[J];Journal of Iron and Steel Research(International);2005年03期
5 ;ON THE TENSILE MECHANICAL PROPERTY OF Si-Mn TRIP STEELS AT HIGH STRAIN RATE[J];Acta Metallurgica Sinica(English Edition);2002年03期
6 王利,金蕾,夏啟,徐祖耀;冷軋TRIP鋼的特性及應(yīng)用[J];汽車工藝與材料;2004年06期
7 ;Effects of Austempering after Hot Deformation on the Mechanical Properties of Hot Rolled Si-Mn TRIP Steel Sheets[J];材料熱處理學(xué)報;2004年05期
8 REGER Mihaly,VERO Balazs,CSEPELI Zsolt;Modeling of Intel-critical Heat Treatment of DP and TRIP Steels[J];材料熱處理學(xué)報;2004年05期
9 ;Effect of Silicon Content on Thermodynamics of Austenite Decomposition in C-Si-Mn TRIP Steels[J];Journal of Iron and Steel Research(International);2006年03期
10 姚貴升;;塑性變形誘導(dǎo)相變鋼TRIP鋼的性能和應(yīng)用[J];汽車工藝與材料;2006年09期
相關(guān)會議論文 前10條
1 徐慶新;王光學(xué);張玉倫;王運(yùn)濤;;TRIP并行軟件的開發(fā)與應(yīng)用[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
2 龍彩霞;伍翠蘭;王雙寶;陳江華;;形變量對TRIP鋼微觀結(jié)構(gòu)的影響[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
3 李霞;陳立紅;王亞芬;;化學(xué)成分和連退工藝對冷軋TRIP590鋼組織和性能的影響[A];第5屆中國金屬學(xué)會青年學(xué)術(shù)年會論文集[C];2010年
4 李麟;B.C.De Cooman;P.Wollants;胡心彬;何燕霖;朱曉東;;鋁和硅對含磷TRIP鋼力學(xué)性能的影響[A];中國金屬學(xué)會2003中國鋼鐵年會論文集(4)[C];2003年
5 王利;金蕾;夏啟;徐祖耀;;寶鋼汽車用冷軋TRIP鋼板的開發(fā)和應(yīng)用[A];中國金屬學(xué)會2003中國鋼鐵年會論文集(4)[C];2003年
6 Akihiko Nagasaka;Koh-ichi Sugimoto;Yoichi Mukai;Yuichi Kubota;;EFFECTS OF YAG LASER CUTTING AND POST HEAT TREATMENT ON STRETCH-FLANGEABILITY OF 0.1%-0.4%C TRIP STEELS[A];復(fù)合材料表征與應(yīng)用的新進(jìn)展[C];2006年
7 郭金宇;劉仁東;孫建倫;王科強(qiáng);嚴(yán)玲;王旭;林利;;含鈮TRIP鋼的組織與力學(xué)性能研究[A];第七屆(2009)中國鋼鐵年會大會論文集(中)[C];2009年
8 陳宇;王立輝;李長一;;新型鋁系TRIP鋼的組織和性能分析[A];2007中國鋼鐵年會論文集[C];2007年
9 嚴(yán)玲;劉仁東;唐荻;楊梅梅;;低碳-硅-錳系TRIP鋼的組織轉(zhuǎn)變與斷裂機(jī)制研究[A];2007中國鋼鐵年會論文集[C];2007年
10 王勇圍;;TRIP鋼中奧氏體形態(tài)對性能的影響[A];2012年全國軋鋼生產(chǎn)技術(shù)會論文集(上)[C];2012年
相關(guān)重要報紙文章 前10條
1 記者 阮海兒;寶鋼國內(nèi)獨(dú)家開發(fā)成功冷軋TRIP鋼[N];中國冶金報;2004年
2 李光瀛;冷軋TRIP鋼研發(fā)在鋼研院取得重要進(jìn)展[N];中國冶金報;2006年
3 ;高性能低硅含磷TRIP鋼的開發(fā)[N];世界金屬導(dǎo)報;2012年
4 ;試驗(yàn)溫度對TRIP合金鋼力學(xué)行為的影響[N];世界金屬導(dǎo)報;2002年
5 廖建國;TRIP型無碳貝氏體鋼板的成形性[N];世界金屬導(dǎo)報;2012年
6 Pasi Pekka Suikkanen Antti-Jussi Ristola 李亞霏 譯;芬蘭進(jìn)行TRIP超高強(qiáng)鋼組織結(jié)構(gòu)分析[N];中國冶金報;2013年
7 戎詠華;鈮微合金化先進(jìn)高強(qiáng)度TRIP和Q-P-T鋼的研究[N];世界金屬導(dǎo)報;2011年
8 徐錕 劉國權(quán);鈮微合金化對高AI冷軋TRIP鋼組織與性能的影響[N];世界金屬導(dǎo)報;2010年
9 ;Nb微合金化TRIP鋼熱處理?xiàng)l件、組織和性能關(guān)系[N];世界金屬導(dǎo)報;2002年
10 高宏適;高韌、超高強(qiáng)TRIP型馬氏體鋼板的開發(fā)[N];世界金屬導(dǎo)報;2014年
相關(guān)博士學(xué)位論文 前10條
1 王超;高強(qiáng)度TRIP鋼組織性能表征及基于微觀組織的有限元模擬[D];東北大學(xué);2014年
2 劉仁東;新型高強(qiáng)度和超高強(qiáng)度相變誘發(fā)塑性鋼研制[D];東北大學(xué);2013年
3 郭志凱;高錳TRIP鋼的組織控制與力學(xué)行為研究[D];北京科技大學(xué);2016年
4 馮慶曉;熱軋微合金化TRIP鋼組織控制與力學(xué)性能研究[D];北京科技大學(xué);2016年
5 王立輝;含稀土TRIP/TWIP鋼的微觀結(jié)構(gòu)和變形行為研究[D];北京科技大學(xué);2017年
6 單體坤;TRIP鋼板成形性能和回彈特性研究[D];上海交通大學(xué);2008年
7 何忠平;應(yīng)變速率對不同強(qiáng)度級別TRIP鋼力學(xué)行為影響的研究[D];上海大學(xué);2012年
8 張維娜;高錳TRIP鋼組織性能演變機(jī)理及薄帶成型方法研究[D];東北大學(xué);2011年
9 張曉蘭;TRIP6在胰腺癌進(jìn)展中的機(jī)制研究[D];第二軍醫(yī)大學(xué);2014年
10 胡志剛;考慮預(yù)應(yīng)變和烘烤影響的TRIP鋼疲勞性能實(shí)驗(yàn)及壽命預(yù)測研究[D];上海交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 段小廣;Fe-Mn-Al-Si系TRIP/TWIP鋼相轉(zhuǎn)變及相平衡研究[D];東北大學(xué);2013年
2 閆強(qiáng)軍;高鋁低硅TRIP鋼組織與性能的研究[D];東北大學(xué);2013年
3 張一凡;TRIP800激光焊縫在冷軋中的斷裂研究[D];遼寧科技大學(xué);2015年
4 陳龍;ApoE及TRIP4基因多態(tài)性與阿爾茨海默病的相關(guān)性研究[D];安徽醫(yī)科大學(xué);2016年
5 王云w,
本文編號:2186664
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2186664.html