超輕泡沫金屬的簡易高效制備及其性能研究
[Abstract]:Ultra-light foam materials have many advantages, such as ultra-low density, high specific surface area, absorption of impact energy, and so on. They are widely used in catalyst support, energy absorption and other fields. Ultra-light metal foams with porosity of more than 99% or density of less than 10 mg/cm3 face greater challenges. Conventional preparation methods can only obtain foam metals with porosity of 40%~97%, but the preparation methods of ultra-light non-metallic foams are not suitable for metal foams. So far, no simple process has been found, and the cost is low. In this paper, a cheap and clean foam-melamine foam for daily use is selected as a template. Based on the traditional electroless plating, a palladium-free activation process is used for the first time to prepare the macro-structure of ultra-light foam metal, such as silver, nickel, cobalt, copper and so on. The porosity of the foam metal is above 99.5%, and the lightest one is nickel foam. The density is only 7.4 mg/cm 3 and the porosity is as high as 99.9%. Electroless silver plating is carried out by one-step method without activation. Continuous ultrathin silver films are formed on the three-dimensional scale of foam templates. The structure and formation mechanism of silver films under different technological conditions are studied. The thickness of the silver layer is only 200 nm, which is in agreement with the theoretical calculation. The formation mechanism of the silver layer shows that the nucleation and growth rate of the electroless silver plating can be changed by controlling the concentration of the solution and the reaction temperature, thus forming different structures of the coating. Ultra-light silver foam with density as low as 18.7 mg/cm3 was successfully prepared by heating melamine foam with electroless silver plating and removing template. The porosity of silver foam was 99.8%. It is the lightest known macro-structure of silver foam. The formation process of silver foam with temperature was observed by scanning electron microscopy in situ. The results show that the ultralight silver foam can be obtained by sintering the electroless silver-plated foam. The silver foam consists of hollow silver tubes with different wall thicknesses. The structure of silver foam is related to the sintering temperature, and the sintering temperature rises from 660 to 70. When the temperature is 0, the hollow tube of silver foam changes into solid structure, and the density of silver foam increases; the compressive strength of ultralight silver foam decreases with the increase of porosity, and the silver foam formed by hollow tube has greater compressive strength; the in-situ observation of the preparation process of silver foam shows that silver recrystallization and growth occur at lower temperature, and the composition of silver foam increases. The diameter of silver wire in silver foam changes and shrinks, resulting in volume shrinkage of silver foam macrostructure compared with that before removing template. Self-triggering electroless nickel plating without palladium activation on silver layer is realized on the basis of electroless silver plating foam. The composite coating with Ni/Ag/Ni sandwich structure is obtained. The thickness of ultra-thin continuous nickel plating layer is only 50 nm. The structure and formation mechanism of electroless nickel plating without palladium were studied. The preparation process, structure and compressive properties of electroless nickel foam were studied. The results showed that electroless nickel plating could be carried out on a palladium-free activated silver layer. The mechanism study showed that good conductivity of ultrathin continuous silver layer promoted three-dimensional chemistry. The formation of the nickel-plated layer, the product after removing the template was ultralight nickel-silver composite foam, and the pore wall was composed of Ni/Ag/Ni sandwich structure metal layer. The mechanism analysis showed that the strong driving force of electroless nickel plating and the formation of hydrogen promoted the formation of the sandwich structure; the density of ultralight nickel foam was as low as 7.4 mg/cm 3, and the porosity was as high as 99.9%; the compression curve of ultralight nickel foam had a super The plateau strain can reach 82% in the long compression plateau area, and the stress remains unchanged in the plateau area, so that the energy absorption efficiency of nickel foam can reach 98%. The ultralight foam cobalt and ultralight foam copper were prepared by electroless silver plating foam and palladium-free activation process. The results show that the ultra-thin cobalt foam layer with 150 nm thickness is formed by electroless plating of cobalt on the polymer surface by palladium-free activation method, and the ultra-light cobalt foam is obtained by sintering. The mechanism of electroless plating on silver layer shows that the electrons produced by dehydrogenation of metal ions absorb and dehydrogenate, and the continuous ultra-thin silver layer can promote electron transport and accelerate the deposition of metal on the surface of silver layer to form a continuous metal coating. Foam is universal to all kinds of electroless plating. The method adopted is a simple and efficient general method for preparing ultra-light metal foam.
【學位授予單位】:天津大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG178
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 耀星;國外泡沫金屬的制造及應用[J];粉末冶金工業(yè);2000年02期
2 谷岳;泡沫金屬[J];汽車工藝與材料;2000年09期
3 耀星;粉末冶金泡沫金屬應用前景看好[J];粉末冶金工業(yè);2001年01期
4 王錄才,于利民,王芳,李秀山;多孔泡沫金屬的研究及其前景展望[J];太原重型機械學院學報;2002年01期
5 陳學廣,趙維民,馬彥東,胡愛文;泡沫金屬的發(fā)展現(xiàn)狀、研究與應用[J];粉末冶金技術;2002年06期
6 于英華,梁冰,李智超;多孔泡沫金屬研究現(xiàn)狀及分析[J];青島建筑工程學院學報;2003年01期
7 左孝青,孫加林;泡沫金屬制備技術研究進展[J];材料科學與工程學報;2004年03期
8 劉亞俊,趙生權,劉崴,陳平,湯勇;泡沫金屬制備方法及其研究概況[J];現(xiàn)代制造工程;2004年09期
9 陳文革,張強;泡沫金屬的特點、應用、制備與發(fā)展[J];粉末冶金工業(yè);2005年02期
10 史承明;王曉明;張陵;;泡沫金屬及其在建筑工程中的應用[J];陜西理工學院學報(自然科學版);2006年02期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 楊思一;呂廣庶;;具有規(guī)則孔型的泡沫金屬結(jié)構設計與制造方法研究[A];2004年中國材料研討會論文摘要集[C];2004年
2 柳暢;陳常青;沈亞鵬;;小泡沫金屬壓痕試驗的數(shù)值模擬及其反演[A];中國力學學會學術大會'2005論文摘要集(下)[C];2005年
3 陳振乾;施明恒;;泡沫金屬內(nèi)流體凍結(jié)相變的傳熱過程[A];第四屆全國制冷空調(diào)新技術研討會論文集[C];2006年
4 宋紹峰;姜培學;;泡沫金屬與針翅結(jié)構換熱器的實驗研究[A];2007年中國機械工程學會年會論文集[C];2007年
5 鄭志軍;虞吉林;;泡沫金屬的動態(tài)壓潰:沖擊壓縮、多尺度模擬和率敏感性[A];中國力學大會——2013論文摘要集[C];2013年
6 蔣家橋;黃西成;胡時勝;;泡沫金屬緩沖器的設計新方法及應用[A];中國工程物理研究院科技年報(2003)[C];2003年
7 李劍榮;寇東鵬;虞吉林;;具有雙重尺寸孔結(jié)構的開孔泡沫金屬的優(yōu)化設計[A];中國力學學會學術大會'2005論文摘要集(下)[C];2005年
8 穆林;韓瑤;張建;趙桂平;盧天健;;基于分形理論的泡沫金屬材料力學細觀結(jié)構分析[A];中國力學大會——2013論文摘要集[C];2013年
9 高建成;劉趙淼;;泡沫金屬的力學性能研究進展[A];北京力學會第13屆學術年會論文集[C];2007年
10 楊秀;陳振乾;施明恒;;泡沫金屬內(nèi)流體凍結(jié)相變傳熱過程的研究[A];中國制冷學會2007學術年會論文集[C];2007年
中國重要報紙全文數(shù)據(jù)庫 前4條
1 張譯中;金屬泡沫材料研究進展[N];世界金屬導報;2002年
2 中航工業(yè)制造所 侯紅亮;新型輕量化功能與結(jié)構材料——泡沫金屬及其三明治結(jié)構[N];中國航空報;2014年
3 石發(fā)清;制備泡末鋁工藝的研究[N];中國有色金屬報;2005年
4 李有觀;制造泡沫鋁合金材料的新技術[N];中國有色金屬報;2005年
中國博士學位論文全文數(shù)據(jù)庫 前10條
1 張曉陽;多軸條件下基于細觀結(jié)構模型的泡沫金屬屈服與破壞行為研究[D];華南理工大學;2016年
2 施娟;泡沫金屬強化沸騰傳熱過程的研究[D];東南大學;2015年
3 彭文平;耦合化學反應的多孔介質(zhì)內(nèi)熱質(zhì)傳遞機理研究[D];中國科學院工程熱物理研究所;2017年
4 姬科舉;開孔泡沫金屬的功能化應用基礎研究[D];南京航空航天大學;2016年
5 姜斌;超輕泡沫金屬的簡易高效制備及其性能研究[D];天津大學;2016年
6 王長峰;泡沫金屬的動態(tài)壓潰模型和率敏感性分析[D];中國科學技術大學;2013年
7 李科;泡沫金屬發(fā)泡過程的泡沫演化動力學研究[D];大連理工大學;2009年
8 韓春光;拉伸條件下泡沫金屬的細觀統(tǒng)計分析模型及統(tǒng)計特性研究[D];華南理工大學;2011年
9 羅彥茹;泡沫SiC_p/ZL104復合材料的制備及性能研究[D];吉林大學;2007年
10 周志偉;泡沫鋁合金與芳綸紙蜂窩的屈服行為研究[D];太原理工大學;2013年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 黃媛媛;開孔泡沫金屬微結(jié)構強化傳熱性能的數(shù)值模擬研究[D];華東理工大學;2015年
2 楊皓;純鋁泡沫的真空發(fā)泡制備與力學性能研究[D];昆明理工大學;2015年
3 高曉莉;泡沫金屬磁流變液阻尼器的優(yōu)化設計及性能研究[D];上海應用技術學院;2015年
4 張學麗;吸聲降噪密胺泡沫的制備與表征[D];北京化工大學;2015年
5 王江龍;沖擊載荷作用下梯度泡沫的壓縮特性分析[D];太原理工大學;2016年
6 封偉民;泡沫鎂材料的制備與性能研究[D];哈爾濱工業(yè)大學;2016年
7 牛玲;緊湊式換熱器優(yōu)化設計及其相變傳熱研究[D];鄭州大學;2016年
8 郭坤山;泡沫鋼的制備與組織性能研究[D];昆明理工大學;2016年
9 李朝劍;空心微球結(jié)構泡沫金的光電特性研究[D];云南大學;2016年
10 孫猛;泡沫金屬磁流變液阻尼器的半主動控制特性研究[D];上海應用技術大學;2016年
,本文編號:2180900
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2180900.html