天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

多軸數(shù)控機(jī)床準(zhǔn)靜態(tài)空間誤差建模及誤差辨識方法研究

發(fā)布時間:2018-08-12 18:07
【摘要】:隨著我國制造業(yè)轉(zhuǎn)型升級的深入發(fā)展,各行業(yè)對精密機(jī)械產(chǎn)品的需求量不斷攀升。數(shù)控機(jī)床作為制造業(yè)的基礎(chǔ)裝備,其加工精度直接影響工件的品質(zhì)。因此,數(shù)控機(jī)床加工精度一直是學(xué)術(shù)界和工程領(lǐng)域的研究熱點。然而,精度和誤差是一對相互矛盾關(guān)系,揭示數(shù)控機(jī)床各種誤差產(chǎn)生的機(jī)理、研究誤差建模及控制方法是提高數(shù)控機(jī)床加工精度亟待解決的關(guān)鍵科學(xué)問題。為了解決上述問題,本論文深入研究多軸數(shù)控機(jī)床準(zhǔn)靜態(tài)空間誤差建模及誤差項檢測辨識方法,并結(jié)合機(jī)床實驗,驗證所提出方法的正確性和可行性。本論文的主要研究工作和成果如下:(1)提出一種基于增量矩陣的空間誤差建模方法:采用增量的形式探討機(jī)床相鄰體間的實際坐標(biāo)變換,通過疊加相鄰體間位姿引起的誤差求解機(jī)床總空間誤差,為直觀識別多軸數(shù)控機(jī)床關(guān)鍵誤差源提供依據(jù);谒岢龅慕7椒,利用微分法建立了數(shù)控機(jī)床誤差靈敏度分析模型,為數(shù)控機(jī)床精度分配、局部誤差補(bǔ)償提供理論依據(jù)。采用所提出的建模方法,建立了三軸數(shù)控機(jī)床和五軸RTTTR型數(shù)控機(jī)床空間綜合誤差模型,并對兩種數(shù)控機(jī)床進(jìn)行誤差靈敏度分析。(2)設(shè)計多軸數(shù)控機(jī)床移動軸和旋轉(zhuǎn)軸誤差檢測實驗,建立了誤差辨識模型:利用球桿儀將旋轉(zhuǎn)軸位移誤差和轉(zhuǎn)角誤差進(jìn)行分開測量辨識,以RTTTR型五軸聯(lián)動機(jī)床的A、C軸為研究對象,采用軸向和徑向測量法測量辨識位移誤差;結(jié)合A、C軸的具體特點,分別設(shè)計了兩軸轉(zhuǎn)角誤差檢測實驗,建立了轉(zhuǎn)角誤差辨識模型。針對激光干涉儀九線測量法對測點要求嚴(yán)格、誤差項計算值含累積誤差、直線度測量值含垂直度問題,提出改進(jìn)措施并建立新的移動軸誤差辨識模型。對五軸龍門機(jī)床QLM27100-5X開展移動軸誤差檢測辨識,探討三軸移動引起的空間幾何誤差和熱誤差分布,并對空間幾何誤差進(jìn)行靈敏度分析,驗證了所提出的誤差辨識方法的可行性。(3)建立了多軸數(shù)控機(jī)床進(jìn)給軸幾何誤差支持向量機(jī)模型和基于熱變形修正系數(shù)的位移熱誤差模型:基于多軸數(shù)控機(jī)床進(jìn)給軸幾何誤差測量數(shù)據(jù)樣本少、非線性強(qiáng)的特點,建立移動軸和旋轉(zhuǎn)軸幾何誤差支持向量機(jī)模型;針對當(dāng)前研究忽略移動軸軸向和徑向熱變形系數(shù)不一致、對熱誤差特性把握不全面的問題,從分析移動軸熱變形機(jī)理著手,考慮晶體材料線膨脹系數(shù)和體膨脹系數(shù)的關(guān)聯(lián)性,從理論上修正絲杠軸向和徑向熱變形公式,根據(jù)移動進(jìn)給系統(tǒng)溫度場非均勻性特點,建立基于熱變形修正系數(shù)的定位熱誤差和直線度熱誤差模型;以五軸龍門機(jī)床QLM27100-5X的移動進(jìn)給系統(tǒng)為研究對象,驗證了兩種模型的精度。(4)提出基于最優(yōu)閾值的溫度變量分組方法,以分組得到的典型溫度變量作為建模自變量,建立主軸熱誤差分片逆回歸模型:以模糊聚類和相關(guān)性分析為基礎(chǔ),提出一種基于最優(yōu)閾值的溫度變量分組方法,解決熱誤差建模中溫度變量分組過于依賴經(jīng)驗的問題;基于該方法獲取最佳建模溫度變量,提出分片逆回歸熱誤差建模方法,解決了當(dāng)前常見的熱誤差回歸模型函數(shù)形式固定、做長期預(yù)測時精度不高的問題,提高了熱誤差模型的泛化性和外推能力;采用所提的方法,對臥式加工中心MCH63進(jìn)行溫度變量分組,找出最佳溫度變量用于主軸熱誤差分片逆回歸建模,分析顯示模型精度良好。(5)以五軸聯(lián)動機(jī)床QLM27100-5X和加工中心MCH63為實驗平臺,利用課題組自主開發(fā)的溫度-誤差檢測系統(tǒng)及誤差補(bǔ)償系統(tǒng),實時檢測機(jī)床溫度和熱誤差數(shù)據(jù),并對移動軸單項定位幾何誤差、移動軸空間熱誤差及主軸軸向熱誤差三類模型進(jìn)行了仿真驗證及實驗驗證。
[Abstract]:With the deepening development of the transformation and upgrading of China's manufacturing industry, the demand for precision machinery products in all walks of life is increasing. As the basic equipment of manufacturing industry, the machining accuracy of CNC machine tools has a direct impact on the quality of the workpiece. In order to solve the above problems, this paper deeply studies the quasi-static spatial error modeling and error detection and identification methods of multi-axis CNC machine tools, and combines them with other methods. The main research work and achievements of this paper are as follows: (1) A space error modeling method based on incremental matrix is proposed. The actual coordinate transformation between adjacent bodies of machine tools is discussed in incremental form, and the total space of machine tools is solved by superposing the errors caused by the position and pose between adjacent bodies. Based on the proposed modeling method, the error sensitivity analysis model of NC machine tools is established by using the differential method, which provides the theoretical basis for accuracy allocation and local error compensation of NC machine tools. The error sensitivity analysis of two kinds of CNC machine tools is carried out. (2) The error detection experiment of moving and rotating axes of multi-axis CNC machine tools is designed, and the error identification model is established. The displacement error and rotating angle error of rotating axes are measured and identified separately by using the Ball-Bar instrument, and the error of RTTTR five-axis linkage machine tool is identified. A and C axes are taken as the research object, and the displacement error is measured and identified by axial and radial measurement methods. According to the specific characteristics of A and C axes, two axes rotation error detection experiments are designed and the identification model of rotation error is established. Improvement measures are proposed and a new identification model of moving axis error is established. The moving axis error detection and identification of five-axis gantry machine QLM27100-5X is carried out. The spatial geometric error and thermal error distribution caused by three-axis movement are discussed. Sensitivity analysis of spatial geometric error is carried out to verify the feasibility of the proposed identification method. Feasibility. (3) The geometric error support vector machine (SVM) model and the displacement thermal error model based on thermal deformation correction coefficient are established for the feed shaft of multi-axis CNC machine tools. The problem of neglecting the inconsistency between axial and radial thermal deformation coefficients of the moving shaft and the incomplete understanding of the thermal error characteristics is studied. Based on the analysis of the thermal deformation mechanism of the moving shaft, and considering the correlation between the linear expansion coefficient and the volume expansion coefficient of the crystal material, the axial and radial thermal deformation formulas of the lead screw are modified theoretically, and the temperature field of the moving feed system is non-uniform. Based on the uniformity characteristics, the location thermal error and straightness thermal error models based on the thermal deformation correction coefficient are established, and the accuracy of the two models is validated by the moving feed system of the five-axis gantry machine QLM27100-5X. (4) A grouping method of temperature variables based on the optimal threshold is proposed, and the typical temperature variables obtained by grouping are taken as the modeling independent. A piecewise inverse regression model of spindle thermal error is established. Based on fuzzy clustering and correlation analysis, a grouping method of temperature variables based on optimal threshold is proposed to solve the problem that the grouping of temperature variables depends too much on experience in thermal error modeling. The modeling method solves the problem that the function form of the common regression model of thermal error is fixed and the precision is not high when making long-term prediction, and improves the generalization and extrapolation ability of the thermal error model. Regression modeling and analysis show that the accuracy of the model is good. (5) Taking QLM27100-5X and MCH63 as the experimental platform, using the temperature-error detection system and error compensation system developed by our research group, the temperature and thermal error data of the machine tool are measured in real time, and the single positioning geometric error of the moving shaft, the spatial thermal error of the moving shaft and the error of the moving shaft are measured. Three kinds of models of axial thermal error of spindle are simulated and verified by experiments.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG659

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張琨;姚曉棟;張毅;楊建國;;基于時序模型優(yōu)化選擇的熱誤差建模[J];組合機(jī)床與自動化加工技術(shù);2011年10期

2 林潔瓊;邱立偉;盧明明;;基于多體系統(tǒng)理論的精密加工中心綜合誤差建模[J];機(jī)床與液壓;2011年21期

3 陳亞寧;丁文政;裴亮;;三軸再制造機(jī)床空間幾何誤差建模與辨識研究[J];機(jī)床與液壓;2008年04期

4 徐芳;;基于多體系統(tǒng)理論的五軸聯(lián)動機(jī)床誤差建模[J];企業(yè)技術(shù)開發(fā);2014年11期

5 張毅;楊建國;李自漢;;基于自然指數(shù)模型的機(jī)床定位誤差建模與實時補(bǔ)償[J];組合機(jī)床與自動化加工技術(shù);2013年08期

6 張鋒;鮑磊;孫瑞濤;王福闖;邵敏;;PSA貼敷設(shè)備的精度分析和幾何誤差建模[J];制造業(yè)自動化;2014年13期

7 楊洋;聶學(xué)俊;黃謹(jǐn)佳;沈曉紅;王麗;;機(jī)床熱誤差建模研究現(xiàn)狀分析[J];煤礦機(jī)械;2012年01期

8 朱秋菊;李郝林;;基于神經(jīng)模糊控制的機(jī)床熱誤差建模方法[J];現(xiàn)代制造工程;2012年11期

9 項偉宏,鄭力,劉大成,趙大泉;機(jī)床主軸熱誤差建模[J];制造技術(shù)與機(jī)床;2000年11期

10 陳劍雄;林述溫;;基于微分變換的數(shù)控機(jī)床幾何誤差建模的研究[J];工具技術(shù);2013年08期

相關(guān)會議論文 前1條

1 范晉偉;關(guān)佳亮;王文超;駱琪;劉又午;章青;;3-5軸數(shù)控機(jī)床通用空間幾何誤差建模及精密加工指令求解方法研究[A];面向21世紀(jì)的生產(chǎn)工程——2001年“面向21世紀(jì)的生產(chǎn)工程”學(xué)術(shù)會議暨企業(yè)生產(chǎn)工程與產(chǎn)品創(chuàng)新專題研討會論文集[C];2001年

相關(guān)博士學(xué)位論文 前5條

1 呂程;基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究[D];湖南大學(xué);2016年

2 章婷;多軸數(shù)控機(jī)床準(zhǔn)靜態(tài)空間誤差建模及誤差辨識方法研究[D];南京航空航天大學(xué);2016年

3 李永祥;數(shù)控機(jī)床熱誤差建模新方法及其應(yīng)用研究[D];上海交通大學(xué);2007年

4 崔崗衛(wèi);重型數(shù)控落地銑鏜床誤差建模及補(bǔ)償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年

5 李巖;光電穩(wěn)定跟蹤裝置誤差建模與評價問題研究[D];國防科學(xué)技術(shù)大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 王建亮;機(jī)床幾何誤差建模及敏感性分析[D];太原理工大學(xué);2016年

2 查小娜;數(shù)控機(jī)床導(dǎo)軌系統(tǒng)關(guān)鍵誤差建模與實時補(bǔ)償研究[D];安徽理工大學(xué);2016年

3 孫宇鵬;A3并聯(lián)動力頭的誤差建模與精度設(shè)計[D];天津大學(xué);2014年

4 王家興;基于3-(?)RS混聯(lián)加工中心誤差建模方法的研究[D];天津大學(xué);2016年

5 李鋒;大型雙柱立車誤差建模、測量及分析[D];上海交通大學(xué);2011年

6 多麗婭;北斗衛(wèi)星導(dǎo)航系統(tǒng)接收模塊的誤差建模及應(yīng)用研究[D];內(nèi)蒙古工業(yè)大學(xué);2014年

7 楊枝;高檔數(shù)控機(jī)床幾何誤差建模與參數(shù)溯源優(yōu)化技術(shù)及其應(yīng)用[D];浙江大學(xué);2014年

8 孫慧潔;大型真空調(diào)試平臺的設(shè)計及其誤差建模分析[D];哈爾濱工業(yè)大學(xué);2013年

9 鄒君陽;數(shù)控機(jī)床整機(jī)熱分析及動態(tài)熱誤差建模的研究[D];華東理工大學(xué);2013年

10 白福友;基于貝葉斯網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差建模研究[D];浙江大學(xué);2008年

,

本文編號:2179873

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2179873.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4001f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com