多軸數(shù)控機(jī)床準(zhǔn)靜態(tài)空間誤差建模及誤差辨識方法研究
[Abstract]:With the deepening development of the transformation and upgrading of China's manufacturing industry, the demand for precision machinery products in all walks of life is increasing. As the basic equipment of manufacturing industry, the machining accuracy of CNC machine tools has a direct impact on the quality of the workpiece. In order to solve the above problems, this paper deeply studies the quasi-static spatial error modeling and error detection and identification methods of multi-axis CNC machine tools, and combines them with other methods. The main research work and achievements of this paper are as follows: (1) A space error modeling method based on incremental matrix is proposed. The actual coordinate transformation between adjacent bodies of machine tools is discussed in incremental form, and the total space of machine tools is solved by superposing the errors caused by the position and pose between adjacent bodies. Based on the proposed modeling method, the error sensitivity analysis model of NC machine tools is established by using the differential method, which provides the theoretical basis for accuracy allocation and local error compensation of NC machine tools. The error sensitivity analysis of two kinds of CNC machine tools is carried out. (2) The error detection experiment of moving and rotating axes of multi-axis CNC machine tools is designed, and the error identification model is established. The displacement error and rotating angle error of rotating axes are measured and identified separately by using the Ball-Bar instrument, and the error of RTTTR five-axis linkage machine tool is identified. A and C axes are taken as the research object, and the displacement error is measured and identified by axial and radial measurement methods. According to the specific characteristics of A and C axes, two axes rotation error detection experiments are designed and the identification model of rotation error is established. Improvement measures are proposed and a new identification model of moving axis error is established. The moving axis error detection and identification of five-axis gantry machine QLM27100-5X is carried out. The spatial geometric error and thermal error distribution caused by three-axis movement are discussed. Sensitivity analysis of spatial geometric error is carried out to verify the feasibility of the proposed identification method. Feasibility. (3) The geometric error support vector machine (SVM) model and the displacement thermal error model based on thermal deformation correction coefficient are established for the feed shaft of multi-axis CNC machine tools. The problem of neglecting the inconsistency between axial and radial thermal deformation coefficients of the moving shaft and the incomplete understanding of the thermal error characteristics is studied. Based on the analysis of the thermal deformation mechanism of the moving shaft, and considering the correlation between the linear expansion coefficient and the volume expansion coefficient of the crystal material, the axial and radial thermal deformation formulas of the lead screw are modified theoretically, and the temperature field of the moving feed system is non-uniform. Based on the uniformity characteristics, the location thermal error and straightness thermal error models based on the thermal deformation correction coefficient are established, and the accuracy of the two models is validated by the moving feed system of the five-axis gantry machine QLM27100-5X. (4) A grouping method of temperature variables based on the optimal threshold is proposed, and the typical temperature variables obtained by grouping are taken as the modeling independent. A piecewise inverse regression model of spindle thermal error is established. Based on fuzzy clustering and correlation analysis, a grouping method of temperature variables based on optimal threshold is proposed to solve the problem that the grouping of temperature variables depends too much on experience in thermal error modeling. The modeling method solves the problem that the function form of the common regression model of thermal error is fixed and the precision is not high when making long-term prediction, and improves the generalization and extrapolation ability of the thermal error model. Regression modeling and analysis show that the accuracy of the model is good. (5) Taking QLM27100-5X and MCH63 as the experimental platform, using the temperature-error detection system and error compensation system developed by our research group, the temperature and thermal error data of the machine tool are measured in real time, and the single positioning geometric error of the moving shaft, the spatial thermal error of the moving shaft and the error of the moving shaft are measured. Three kinds of models of axial thermal error of spindle are simulated and verified by experiments.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張琨;姚曉棟;張毅;楊建國;;基于時序模型優(yōu)化選擇的熱誤差建模[J];組合機(jī)床與自動化加工技術(shù);2011年10期
2 林潔瓊;邱立偉;盧明明;;基于多體系統(tǒng)理論的精密加工中心綜合誤差建模[J];機(jī)床與液壓;2011年21期
3 陳亞寧;丁文政;裴亮;;三軸再制造機(jī)床空間幾何誤差建模與辨識研究[J];機(jī)床與液壓;2008年04期
4 徐芳;;基于多體系統(tǒng)理論的五軸聯(lián)動機(jī)床誤差建模[J];企業(yè)技術(shù)開發(fā);2014年11期
5 張毅;楊建國;李自漢;;基于自然指數(shù)模型的機(jī)床定位誤差建模與實時補(bǔ)償[J];組合機(jī)床與自動化加工技術(shù);2013年08期
6 張鋒;鮑磊;孫瑞濤;王福闖;邵敏;;PSA貼敷設(shè)備的精度分析和幾何誤差建模[J];制造業(yè)自動化;2014年13期
7 楊洋;聶學(xué)俊;黃謹(jǐn)佳;沈曉紅;王麗;;機(jī)床熱誤差建模研究現(xiàn)狀分析[J];煤礦機(jī)械;2012年01期
8 朱秋菊;李郝林;;基于神經(jīng)模糊控制的機(jī)床熱誤差建模方法[J];現(xiàn)代制造工程;2012年11期
9 項偉宏,鄭力,劉大成,趙大泉;機(jī)床主軸熱誤差建模[J];制造技術(shù)與機(jī)床;2000年11期
10 陳劍雄;林述溫;;基于微分變換的數(shù)控機(jī)床幾何誤差建模的研究[J];工具技術(shù);2013年08期
相關(guān)會議論文 前1條
1 范晉偉;關(guān)佳亮;王文超;駱琪;劉又午;章青;;3-5軸數(shù)控機(jī)床通用空間幾何誤差建模及精密加工指令求解方法研究[A];面向21世紀(jì)的生產(chǎn)工程——2001年“面向21世紀(jì)的生產(chǎn)工程”學(xué)術(shù)會議暨企業(yè)生產(chǎn)工程與產(chǎn)品創(chuàng)新專題研討會論文集[C];2001年
相關(guān)博士學(xué)位論文 前5條
1 呂程;基于結(jié)合面誤差建模的裝配精度預(yù)測與優(yōu)化研究[D];湖南大學(xué);2016年
2 章婷;多軸數(shù)控機(jī)床準(zhǔn)靜態(tài)空間誤差建模及誤差辨識方法研究[D];南京航空航天大學(xué);2016年
3 李永祥;數(shù)控機(jī)床熱誤差建模新方法及其應(yīng)用研究[D];上海交通大學(xué);2007年
4 崔崗衛(wèi);重型數(shù)控落地銑鏜床誤差建模及補(bǔ)償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
5 李巖;光電穩(wěn)定跟蹤裝置誤差建模與評價問題研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 王建亮;機(jī)床幾何誤差建模及敏感性分析[D];太原理工大學(xué);2016年
2 查小娜;數(shù)控機(jī)床導(dǎo)軌系統(tǒng)關(guān)鍵誤差建模與實時補(bǔ)償研究[D];安徽理工大學(xué);2016年
3 孫宇鵬;A3并聯(lián)動力頭的誤差建模與精度設(shè)計[D];天津大學(xué);2014年
4 王家興;基于3-(?)RS混聯(lián)加工中心誤差建模方法的研究[D];天津大學(xué);2016年
5 李鋒;大型雙柱立車誤差建模、測量及分析[D];上海交通大學(xué);2011年
6 多麗婭;北斗衛(wèi)星導(dǎo)航系統(tǒng)接收模塊的誤差建模及應(yīng)用研究[D];內(nèi)蒙古工業(yè)大學(xué);2014年
7 楊枝;高檔數(shù)控機(jī)床幾何誤差建模與參數(shù)溯源優(yōu)化技術(shù)及其應(yīng)用[D];浙江大學(xué);2014年
8 孫慧潔;大型真空調(diào)試平臺的設(shè)計及其誤差建模分析[D];哈爾濱工業(yè)大學(xué);2013年
9 鄒君陽;數(shù)控機(jī)床整機(jī)熱分析及動態(tài)熱誤差建模的研究[D];華東理工大學(xué);2013年
10 白福友;基于貝葉斯網(wǎng)絡(luò)的數(shù)控機(jī)床熱誤差建模研究[D];浙江大學(xué);2008年
,本文編號:2179873
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2179873.html