天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

超高強(qiáng)度硼鋼板熱沖壓成形數(shù)值模擬及試驗(yàn)研究

發(fā)布時間:2018-08-05 12:18
【摘要】:超高強(qiáng)鋼沖壓件在汽車車身上的應(yīng)用不僅可以實(shí)現(xiàn)汽車輕量化,還能夠提高汽車抗沖擊能力,提高乘車安全性。熱沖壓成形技術(shù)是超高強(qiáng)鋼沖壓件的專用制造技術(shù),硼鋼板是其主要材料之一。該技術(shù)首先將硼鋼板加熱至完全奧氏體化,然后迅速送入帶有冷卻系統(tǒng)的模具中沖壓成形,并在模具內(nèi)保壓淬火,在完成成形的同時實(shí)現(xiàn)奧氏體向馬氏體的微觀組織轉(zhuǎn)變,從而大幅提高成形件的強(qiáng)度及硬度等性能。熱沖壓成形技術(shù)克服了超高強(qiáng)度鋼板常溫下難以成形的問題,且成形件回彈小、幾何精度高。然而,相對傳統(tǒng)沖壓成形技術(shù),溫度的加入使該技術(shù)在應(yīng)用過程中不僅要考慮加熱因素,還要考慮冷卻和相變等方面的問題。熱沖壓成形技術(shù)更加復(fù)雜,需要進(jìn)一步系統(tǒng)地研究。本文從工藝參數(shù)優(yōu)化、硼鋼板不同金相狀態(tài)下傳熱性能、熱沖壓成形模具冷卻系統(tǒng)優(yōu)化設(shè)計、熱沖壓成形數(shù)值模擬及試驗(yàn)等方面對熱沖壓成形技術(shù)開展了系統(tǒng)地研究。本文研究有利于促進(jìn)該技術(shù)的工程應(yīng)用,主要內(nèi)容及結(jié)論如下:(1)熱沖壓成形過程中淬火階段工藝參數(shù)優(yōu)化研究通過平板件熱沖壓成形試驗(yàn),分析了熱沖壓成形過程中淬火階段接觸壓力和保壓時間對成形件微觀組織和機(jī)械性能的影響;并從生產(chǎn)效率角度考慮,對接觸壓力和保壓時間進(jìn)行了優(yōu)化。研究發(fā)現(xiàn):2 mm厚度22Mn B5熱沖壓成形過程中,當(dāng)以室溫下的水為冷卻介質(zhì)時,若淬火階段壓力小于0.3 MPa,零件淬火后馬氏體轉(zhuǎn)變不充分;0.3 MPa壓力時,零件淬火后馬氏體轉(zhuǎn)變充分,強(qiáng)度及硬度性能良好,但完全馬氏體轉(zhuǎn)變所需最短保壓時間較長;0.3~1.0 MPa壓力時,最短保壓時間隨壓力的增大而顯著減少;1.0 MPa以上壓力時,最短保壓時間隨壓力的增大變化不顯著。因此,當(dāng)以室溫下的水為冷卻介質(zhì)時,2 mm厚度22Mn B5熱沖壓成形過程淬火階段最佳的壓力選取范圍為1.0 MPa以上;在該壓力下,鋼板以800℃開始冷卻時,最短保壓時間為8 s。(2)硼鋼板不同金相狀態(tài)下傳熱性能研究基于牛頓冷卻定律微分方程,考慮硼鋼板熱沖壓成形過程中組織轉(zhuǎn)變及相變潛熱的釋放,構(gòu)建了板料與模具間熱傳遞系數(shù)和板料等效比熱容的計算模型。利用該模型,通過平板件熱沖壓成形試驗(yàn),揭示了熱沖壓成形過程中發(fā)生完全馬氏體轉(zhuǎn)變時硼鋼板在不同金相狀態(tài)下等效比熱容和熱傳遞系數(shù)的變化規(guī)律,以及成形條件對不同金相狀態(tài)下熱傳遞系數(shù)的影響規(guī)律。研究發(fā)現(xiàn):淬火過程中,隨著板料溫度的降低,熱傳遞系數(shù)在不同金相狀態(tài)下變化明顯不同,奧氏體狀態(tài)下的熱傳遞系數(shù)變化幅度不大,相變過程中熱傳遞系數(shù)急劇增大后緩慢減小,馬氏體狀態(tài)下熱傳遞系數(shù)緩慢減小;熱傳遞系數(shù)的變化與等效比熱容的變化關(guān)系密切,馬氏體相變過程中大量相變潛熱的釋放使等效比熱容顯著變化,從而導(dǎo)致相變過程中熱傳遞系數(shù)劇烈變化;成形條件對熱傳遞系數(shù)的變化也有一定影響,隨著壓力的增大和模具型面初始溫度的降低,各金相狀態(tài)下的熱傳遞系數(shù)均增大,其中壓力的影響更為顯著。(3)熱沖壓成形模具冷卻系統(tǒng)設(shè)計及優(yōu)化基于能量守恒定律、湍流理論和形狀因子法,以冷卻管道直徑、管道數(shù)量及管道中心與模具型面間距為變量,建立了熱沖壓成形模具冷卻管道參數(shù)的選取準(zhǔn)則;并基于零件不同位置冷卻難易程度,提出了冷卻管道結(jié)構(gòu)優(yōu)化的方法。以汽車車身結(jié)構(gòu)中典型超高強(qiáng)鋼熱沖壓成形件——防撞梁為例,設(shè)計了熱沖壓成形模具冷卻管道模型,構(gòu)建了帶有冷卻管道的防撞梁熱沖壓成形二維數(shù)值模擬模型,以冷卻強(qiáng)度、冷卻均勻性及模具強(qiáng)度為衡量標(biāo)準(zhǔn),利用數(shù)值模擬技術(shù)分析了所設(shè)計冷卻系統(tǒng)的冷卻效果,進(jìn)而對冷卻管道結(jié)構(gòu)進(jìn)行了優(yōu)化。結(jié)果表明:基于本文準(zhǔn)則所設(shè)計的冷卻系統(tǒng),其冷卻強(qiáng)度和模具強(qiáng)度均能達(dá)到要求;從冷卻均勻性角度考慮,利用較小的冷卻管道直徑所設(shè)計的冷卻系統(tǒng)冷卻效果更好。此外,冷卻管道在截面方向上的排布可根據(jù)零件相應(yīng)位置冷卻難易程度進(jìn)行優(yōu)化。根據(jù)冷卻管道等間距排布時零件淬火后的溫度分布情況,可將零件不同位置的冷卻難易程度分為不同等級。在保證模具強(qiáng)度的前提下,對于最難冷卻區(qū)域,冷卻管道可以排布得更密集,且管道中心距模具型面可以更近,管道數(shù)量可以更多;對于較難冷卻區(qū)域,僅取更近的管道中心與模具型面間距即可;對于容易冷卻區(qū)域,冷卻管道排布相對等間距排布時可不改變。模擬結(jié)果表明,結(jié)構(gòu)優(yōu)化后的冷卻系統(tǒng),其冷卻均勻性和冷卻強(qiáng)度均可得到提高。(4)超高強(qiáng)度硼鋼板熱沖壓成形數(shù)值模擬研究以防撞梁為研究對象,構(gòu)建了三維熱沖壓成形數(shù)值模擬模型,利用數(shù)值模擬技術(shù)揭示了熱沖壓成形過程中鋼板溫度、厚度、微觀組織及機(jī)械性能的變化規(guī)律,分析了沖壓階段和淬火階段工藝參數(shù)對成形件組織及性能等的影響規(guī)律,優(yōu)化了防撞梁熱沖壓成形工藝參數(shù)。研究發(fā)現(xiàn):熱成形過程中,板料厚度變化主要發(fā)生在快速沖壓階段,其微觀組織及性能變化主要發(fā)生在淬火階段,熱沖壓成形件卸載后的回彈量很小;在500℃以上初始溫度下快速沖壓時,初始成形溫度對板料微觀組織和硬度影響不顯著,但對板料厚度變化影響顯著,較低的初始成形溫度易導(dǎo)致板料減薄過大;過低的沖壓速度容易導(dǎo)致板料成形過程中熱量散失過多,局部發(fā)生相變強(qiáng)化,成形性降低,而過高的沖壓速度易使板料在高溫下塑性變形過大而導(dǎo)致厚度減薄嚴(yán)重;設(shè)置壓料板對板料熱沖壓成形過程中溫度、微觀組織及硬度的影響不顯著,但大大降低了板料成形過程中的流動性,從而使板料減薄嚴(yán)重,甚至拉裂;淬火過程中,若淬火壓力過小,或保壓時間過短,均得不到完全的馬氏體組織;對本文所研究的防撞梁熱沖壓成形而言,最佳的工藝參數(shù)為800℃初始成形溫度、100mm/s沖壓速度、無壓料板、5 MPa以上淬火壓力和8 s的保壓時間。(5)超高強(qiáng)度硼鋼板熱沖壓成形試驗(yàn)研究基于本文熱成形模具冷卻系統(tǒng)設(shè)計及結(jié)構(gòu)優(yōu)化方法,設(shè)計加工了防撞梁熱沖壓成形模具。利用所加工模具,開展了直接和間接熱沖壓成形試驗(yàn),獲得了合格的直接和間接熱沖壓成形件,驗(yàn)證了本文熱成形模具冷卻管道設(shè)計及結(jié)構(gòu)優(yōu)化方法的合理性。結(jié)合防撞梁熱成形數(shù)值模擬結(jié)果,開展了一系列直接熱沖壓成形試驗(yàn),通過試驗(yàn)方法研究了工藝參數(shù)對防撞梁熱沖壓成形的影響。試驗(yàn)結(jié)果與相應(yīng)模擬結(jié)果吻合,證明了熱沖壓成形數(shù)值模擬的準(zhǔn)確性。
[Abstract]:The application of super high strength steel stamping parts on automobile body can not only realize automobile lightweight, but also improve the impact resistance and safety of the car. Hot stamping forming is a special manufacturing technology for super high strength steel stamping parts. Boron steel plate is one of its main materials. The technology first heat the boron steel plate to complete austenitizing. And then quickly sent into the mold with the cooling system, and pressing and quenching in the mould, and realizing the transformation of austenite to martensite microstructure at the same time of forming, thus greatly improving the strength and hardness of the forming parts. The hot stamping technology overcomes the problem that the super high strength steel plate is difficult to form at normal temperature. The forming parts have small springback and high geometric precision. However, relative to the traditional stamping technology, the addition of temperature makes the technology not only consider the heating factors, but also consider the problems of cooling and phase transformation. The technology of hot stamping is more complex and needs further study. Heat transfer performance under metallographic state, optimum design of cooling system for hot stamping die, numerical simulation and test of hot stamping are systematically studied. This paper is helpful to promote the engineering application of this technology. The main contents and conclusions are as follows: (1) the process parameter of quenching in the process of hot stamping forming. The influence of contact pressure and pressure time on the microstructure and mechanical properties of the formed parts during hot stamping process was analyzed by hot stamping test of plate parts. The contact pressure and pressure holding time were optimized from the angle of production efficiency. It was found that 2 mm thickness 22Mn B5 hot stamping forming During the process, when the water at room temperature is used as the cooling medium, if the quenching stage pressure is less than 0.3 MPa, the martensite transformation is not sufficient after the quenching of the parts. When 0.3 MPa pressure, the martensite transformation is full and the strength and hardness performance is good after the quenching of the parts, but the shortest holding time required for the complete martensite transformation is longer; the shortest holding time when the 0.3~1.0 MPa pressure is pressed is the shortest holding time. With the pressure increasing, the minimum pressure time of 1 MPa is not significant with the increase of pressure. Therefore, when the water at room temperature is the cooling medium, the optimum pressure range of the quenching stage of the 2 mm thickness 22Mn B5 forming process is 1 MPa, and the steel plate is cooled at 800 C under this pressure. The heat transfer performance of the boron steel plate under the different metallographic state is 8 s. (2), which is based on the differential equation of the Newton's cooling law. The calculation model of the heat transfer coefficient and the equivalent heat capacity between the die and the die is constructed by considering the release of the microstructure transformation and the latent heat of the phase change during the hot stamping process of the boron plate. The change law of the equivalent heat capacity and heat transfer coefficient of boron steel plate under different metallographic state and the influence of forming conditions on the heat transfer coefficient under different metallographic state are revealed in the hot stamping forming test. The thermal transfer coefficient varies obviously in different metallographic states. The change of heat transfer coefficient in austenite is not significant. The heat transfer coefficient decreases rapidly in the process of phase transition, and the heat transfer coefficient decreases slowly in martensitic state; the change of heat transfer coefficient is closely related to the change of equivalent heat capacity, martensitic transformation is closely related. The release of a large amount of latent heat in the process changes the equivalent specific heat capacity, which leads to a sharp change in the heat transfer coefficient in the process of phase transition, and the forming conditions have a certain influence on the change of the heat transfer coefficient. (3) the design and optimization of the cooling system of hot stamping die are based on the law of conservation of energy, the theory of turbulence and the method of shape factor, based on the diameter of the cooling pipe, the number of pipes and the distance between the center of the pipe and the mould surface as variables, the selection criteria for the parameters of the cooling pipe of the hot stamping die are established, and based on the different positions of the parts. The cooling pipe structure optimization method is put forward. The model of hot stamping die cooling pipe is designed by taking the typical super high strength steel hot stamping parts in automobile body structure as an example, and a two-dimensional numerical simulation model with cooling pipe is built for the cooling strength and cooling. The cooling efficiency of the designed cooling system is analyzed by the numerical simulation technology, and the structure of the cooling pipe is optimized. The results show that the cooling strength and die strength of the cooling system based on this criterion can reach the requirements; from the angle of cooling uniformity, the utilization of the cooling system is smaller. The cooling system designed by the diameter of the cooling pipe has a better cooling effect. In addition, the arrangement of the cooling pipe in the direction of the section can be optimized according to the difficulty of cooling the parts according to the corresponding position. The cooling difficulty of the parts can be divided into different degrees in different positions according to the temperature distribution of the parts quenched at the same distance between the cooling pipes. Grade. On the premise of guaranteeing the strength of the die, the cooling pipe can be arranged more densely for the most difficult cooling area, and the pipe center can be closer to the mold surface and the number of pipes can be more; for the difficult cooling area, only the closer distance between the pipe center and the mold surface can be taken; for the easy cooling area, the cooling pipe arrangement phase The simulation results show that the cooling uniformity and the cooling strength of the cooling system after the optimized structure can be improved. (4) the numerical simulation of the hot stamping forming of the ultra high strength boron steel plate is studied with the collision beam as the research object, and the numerical simulation model of the 3D hot stamping is constructed and the numerical simulation technology is used to uncover the numerical simulation technology. The change law of the temperature, thickness, microstructure and mechanical properties of the steel sheet during hot stamping was shown. The influence rules of the process parameters on the microstructure and properties of the forming parts were analyzed, and the parameters of the hot stamping process were optimized. The study found that the thickness of the sheet was mainly changed during the process of hot forming. In the rapid stamping stage, the change of microstructure and properties mainly occurs in the quenching stage, and the rebound of the hot stamping parts is very small after unloading. The initial forming temperature has no significant influence on the microstructure and hardness of the sheet material at the initial temperature above 500 degrees C, but it has a significant influence on the sheet thickness and the lower initial forming temperature. It is easy to reduce the thinning of the sheet material easily; the low stamping speed can easily lead to excessive heat loss during the sheet forming process, the local phase transformation and the formability decrease, and the high stamping speed causes the thickness of the sheet to be too large at high temperature, which causes the thickness to be thinned seriously, and the temperature of the sheet material during the hot stamping process is set up. The effect of microstructure and hardness is not significant, but it greatly reduces the fluidity in the process of sheet metal forming, which makes the sheet thinning serious and even crack. In the process of quenching, if the quenching pressure is too small or the pressure time is too short, the complete martensitic structure can not be obtained. For the initial forming temperature of 800 C, 100mm/s stamping speed, no press plate, 5 MPa quenching pressure and 8 s holding time. (5) experimental research on hot stamping forming of ultra high strength boron steel plate, based on the design of cooling system and structure optimization method of the hot forming die, the hot stamping die of anti collision beam was designed and processed. The direct and indirect hot stamping tests have been made. The qualified direct and indirect hot stamping parts are obtained. The rationality of the design and structure optimization of the cooling pipe of the hot forming die is verified. A series of direct hot stamping tests are carried out in combination with the results of the numerical simulation of the thermal forming of the bump beam. The process parameters are studied by the test method. The experimental results agree well with the corresponding simulation results, which proves the accuracy of the numerical simulation of hot stamping.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG306

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王傳勇;李沖;;沖壓成形的質(zhì)量分析及質(zhì)量控制方法探析[J];現(xiàn)代商貿(mào)工業(yè);2013年05期

2 ;輪輞體沖壓成形新工藝[J];鍛壓機(jī)械;1972年01期

3 吳百海,虞秀敏,吳百光,吳申卉,何紹鼎,羅振隆,,何柏生,楊舒放;殼體沖壓成形全自動線的設(shè)計與研究[J];機(jī)械開發(fā);1994年02期

4 吳為民,高文勝,劉嬈,許東衛(wèi);液中放電金屬沖壓成形研究[J];電加工;1998年05期

5 肖小亭,孫友松,廖毅娟,章爭榮;豪華型鋼瓦沖壓成形[J];鍛壓技術(shù);2000年06期

6 肖小亭,孫友松,廖毅娟,章爭榮;豪華型鋼瓦沖壓成形[J];模具工業(yè);2000年12期

7 張舉東;冷軋薄板與沖壓成形性[J];模具技術(shù);2001年01期

8 楊紹明,胡亞民;汽車車廂固定角鐵的沖壓成形[J];機(jī)械工人;2001年01期

9 周金龍 ,蔡添吉 ,莊志宇;鈦金屬筆記型電腦上殼件沖壓成形技術(shù)[J];塑性工程學(xué)報;2002年04期

10 高廣軍;交叉桿沖壓成形的數(shù)值模擬分析及工藝優(yōu)化[J];模具制造;2002年10期

相關(guān)會議論文 前10條

1 張舉東;;汽車薄板與沖壓成形性[A];河南省汽車工程學(xué)會首屆科研學(xué)術(shù)研討會論文集[C];2004年

2 黃國滔;楊相忠;;沖壓成形中的芯塊利用[A];探索創(chuàng)新交流--中國航空學(xué)會青年科技論壇文集[C];2004年

3 蘇嵐;程俊業(yè);陳銀莉;許應(yīng);戎文娟;;熱沖壓成形實(shí)驗(yàn)裝置的開發(fā)和實(shí)驗(yàn)研究[A];第十四屆中國科協(xié)年會第8分會場:鋼材深加工研討會論文集[C];2012年

4 宋子明;;汽車雨刮器托盤的沖壓成形技術(shù)[A];云南省機(jī)械工程學(xué)會第七屆學(xué)術(shù)年會暨十三省區(qū)市機(jī)械工程學(xué)會學(xué)術(shù)年會論文集[C];2008年

5 宋子明;;汽車雨刮器托盤的沖壓成形技術(shù)[A];第四屆十三省區(qū)市機(jī)械工程學(xué)會科技論壇暨2008海南機(jī)械科技論壇論文集[C];2008年

6 張莉;吳開騰;;薄鋼板沖壓成形的有限元模擬和分析研究[A];第五屆全國強(qiáng)動載效應(yīng)及防護(hù)學(xué)術(shù)會議暨復(fù)雜介質(zhì)/結(jié)構(gòu)的動態(tài)力學(xué)行為創(chuàng)新研究群體學(xué)術(shù)研討會論文集[C];2013年

7 周建忠;楊繼昌;許友誼;楊興華;張永康;;柔性化的板料激光沖壓成形新技術(shù)研究[A];制造業(yè)與未來中國——2002年中國機(jī)械工程學(xué)會年會論文集[C];2002年

8 胡勇;張偉勇;袁萍;王呈方;周永清;劉光武;;船體外板沖壓成形研究[A];2011年CAD/CAM學(xué)術(shù)交流會議論文集[C];2011年

9 陳秀深;;轎車車門內(nèi)板的沖壓成形[A];第八屆全國塑性加工學(xué)術(shù)年會論文集[C];2002年

10 周建忠;楊繼昌;許友誼;楊興華;張永康;;柔性化的板料激光沖壓成形新技術(shù)研究[A];第八屆全國塑性加工學(xué)術(shù)年會論文集[C];2002年

相關(guān)重要報紙文章 前7條

1 中航工業(yè)黎明 楊踴 石豎鯤 王立成;特種沖壓成形技術(shù)在航空發(fā)動機(jī)中的應(yīng)用探討[N];中國航空報;2012年

2 張亦筑;鎂合金沖壓成形技術(shù)獲突破[N];中國有色金屬報;2013年

3 記者 付強(qiáng);遼源建立首個院士工作站[N];吉林日報;2012年

4 周賢賓 嚴(yán)致和;發(fā)展遇阻沖壓成形業(yè)尋求突破[N];中國工業(yè)報;2004年

5 劉立忠;軋制差厚板沖壓成形的研究進(jìn)展[N];世界金屬導(dǎo)報;2014年

6 劉友存 摘譯;圍繞用戶需求開展生產(chǎn)工藝創(chuàng)新[N];中國冶金報;2008年

7 劉友存 摘譯;技術(shù)創(chuàng)新保證汽車用鋼有效應(yīng)用[N];中國冶金報;2008年

相關(guān)博士學(xué)位論文 前10條

1 呂萌萌;超高強(qiáng)度硼鋼板熱沖壓成形數(shù)值模擬及試驗(yàn)研究[D];吉林大學(xué);2016年

2 劉大海;5052鋁合金板材磁脈沖輔助沖壓成形變形行為及機(jī)理研究[D];哈爾濱工業(yè)大學(xué);2010年

3 伍杰;鎳鍍層金屬薄板沖壓成形的失效分析[D];湘潭大學(xué);2012年

4 韓利芬;基于神經(jīng)網(wǎng)絡(luò)的薄板沖壓成形中的反演問題研究[D];湖南大學(xué);2006年

5 桂中祥;高性能硼鋼熱沖壓成形及Al-Si鍍層開裂失效行為研究[D];華中科技大學(xué);2014年

6 侯英岢;汽車鋼板沖壓成形表面損傷規(guī)律與控制方法研究[D];上海交通大學(xué);2009年

7 廖代輝;沖壓成形材料性能變化及其對車身結(jié)構(gòu)耐撞性影響研究[D];湖南大學(xué);2013年

8 李小平;加油盒沖壓成形數(shù)值模擬及實(shí)驗(yàn)研究[D];重慶大學(xué);2005年

9 雷正保;汽車覆蓋件沖壓成形CAE技術(shù)及其工業(yè)應(yīng)用研究[D];中南大學(xué);2003年

10 趙東旭;輕量化車用鋼板沖壓成形與回彈數(shù)值仿真及工藝優(yōu)化[D];吉林大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 宋灝;汽車背門內(nèi)板沖壓成形與回彈的數(shù)值模擬研究[D];天津理工大學(xué);2015年

2 孫玉雙;22MnB5鋼板B柱熱沖壓成形技術(shù)研究[D];燕山大學(xué);2015年

3 花魁;大尺寸葉片成形過程模擬及實(shí)驗(yàn)研究[D];陜西理工學(xué)院;2015年

4 孫振謙;汽車圍板沖壓成形研究[D];沈陽理工大學(xué);2015年

5 李曉娟;基于熱—力—相變耦合的高強(qiáng)鋼BR1500HS熱沖壓盒型件研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年

6 王列亮;多因素對鋁合金板沖壓成形質(zhì)量影響的研究[D];南京林業(yè)大學(xué);2015年

7 袁國興;高強(qiáng)鋼TRB熱沖壓成形工藝和試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年

8 張瀟;亞穩(wěn)態(tài)奧氏體不銹鋼標(biāo)準(zhǔn)橢圓形封頭溫沖壓溫度研究[D];浙江大學(xué);2015年

9 張磊;超高強(qiáng)度BR1500HS鋼高溫變形行為研究及熱沖壓過程數(shù)值模擬[D];上海大學(xué);2015年

10 畢盧思;基于某乘用車側(cè)圍板沖壓仿真分析和回彈預(yù)測[D];重慶理工大學(xué);2015年



本文編號:2165776

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2165776.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d11b8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com