Fe-Cu-Ni-Al-Mn鋼中強化相復合析出機制的研究
[Abstract]:With the continuous development of modern industry and science and technology, improving the strength of steel materials has become a subject of great concern. The precipitation strengthening is an important way to improve the strength of steel materials..Fe-Cu steel has been precipitated in the process of aging of Cu and has obvious precipitation strengthening effect. When Fe-Cu steel is added, Ni, Al, Mn elements are added together Fe-Cu-Ni-Al-Mn steel contains multiple intensification phases and precipitation strengthening is more obvious. It is of great significance for developing high strength steel. In this paper, Vivtorinox microhardness (VHN), optical microscope (OM), high resolution transmission electron microscopy (HRTEM) and atomic probe chromatography (APT) are used to analyze Fe-1.5. The precipitation process of wt.%Cu, Fe-1.5 wt.%Cu-2 wt.%Mn, Fe-1.5 wt.%Cu-3 wt.%Ni-1wt.%Al and Fe-0.95 wt.%Cu-3.13 wt.%Ni-1.09 wt.%Al-1.87 wt.%Mn four kinds of steels is studied. The law and mechanism of the influence of the coexistence of the rich phase in the steel are studied. The main results and conclusions are as follows: (1) the precipitation of the rich phase in the steel is affected. In the process of isothermal aging, Fe-Cu-Mn steel reaches the peak of hardness first than that of Fe-Cu steel. The decrease rate of Fe-Cu-Mn steel in over aging stage is greater than that of Fe-Cu steel, which indicates that adding Mn element accelerates the process of precipitation strengthening. APT results show that the number density of Fe-Cu-Mn steel is higher than that of Cu phase in Fe-Cu steel at the early stage of aging, and the later period of aging, Fe-Cu-Mn, Fe-Cu-Mn. The size of Cu phase in steel is larger than that of Fe-Cu steel, and the number density is low. It shows that the addition of Mn elements accelerates the nucleation of the rich Cu phase. The growth and coarsening speed.Mn reduces the interfacial energy between the rich Cu phase and the matrix, increases the chemical composition driving force of the nucleation, thus increases the nucleation rate of the rich Cu phase, and the addition of Mn elements changes the chemical bit of Cu and accelerates the addition of Mn elements. The diffusion rate of Cu accelerates the growth and coarsening of the rich Cu phase. With the prolongation of the aging time, the rich Cu phase will change from the bcc structure to the fcc structure. The transition process will produce defects, a large number of Mn atoms are segregated at the defects, and the rich CuMn phase occurs in amplitude decomposition, and eventually forms the alternating layers of lamellar rich Cu and flaky Mn phase. (2) the law and mechanism of NiAl phase affecting the precipitation of rich Cu phase in steel. During isothermal aging, the peak hardness of Fe-Cu-Ni-Al steel is higher than that of Fe-Cu steel, the peak hardness duration is longer, the addition of Ni and Al strengthens the precipitation strengthening effect. The same aging time, the size of the precipitated phase in Fe-Cu-Ni-Al steel is less than that of Fe-Cu steel, and the quantity density is greater than Fe-Cu. The addition of.Ni and Al increases the nucleation rate of the rich Cu phase in the early aging period. The interface between the rich Cu phase and the matrix of the alpha -Fe provides the particle and energy for the nucleation of the NiAl phase, forming the core shell structure of the rich Cu phase in the core and the NiAl phase in its outer side. This structure makes the precipitate relatively stable, not easy to grow and coarsening, thus maintaining good precipitation enhancement effect. With the further prolongation of the aging time, the rich Cu phase and NiAl phase were separated and the microhardness decreased. (3) in the aging process, the rich NiAlMnCu clusters were first precipitated in Fe-Cu-Ni-Al-Mn steel. With the prolongation of the aging time, the rich NiAlMnCu clusters were decomposed into rich Cu phase and Ni (Al, Mn) phase, and the two precipitates were interdependent on.Fe-Cu-Ni-. The evolution of the precipitated phase in the aging process of Al-Mn steel is: the rich NiAlMnCu cluster? Ni (Al, Mn) Xiang Hefu Cu phase. Whether the addition of Mn, Ni, and Al accelerates the nucleation of the rich Cu phase, but the addition of Mn promotes the growth and coarsening of the rich Cu phase, and therefore, to a certain extent, inhibits the growth and coarsening of rich Cu. Therefore, four kinds of additives have been suppressed to some extent. The velocity of steel nucleation is Fe-Cu-Ni-Al-MnFe-Cu-Ni-AlFe-Cu-MnFe-Cu, and the growth rate is Fe-Cu-MnFe-CuFe-Cu-Ni-AlFe-Cu-Ni-Al-Mn in turn, and the coarsening speed is: the precipitating characteristic of Cu phase and Ni (Al, Mn) phase in Fe-Cu-MnFe-CuFe-Cu-Ni-Al-MnFe-Cu-Ni-Al. (4) steel will inevitably have retained austenite after the quenching of.Fe-Cu-Ni-Al-Mn steel. 50 After 1 h aging at 0 C, there are no precipitates in the retained austenite with APT. The precipitation of martensite and martensite / retained austenite is precipitated, and there is a layer of precipitation and dilution in martensite near the interface. The equivalent radius and spacing of the precipitated phase at the interface are all larger than the precipitates in martensite, and the interface is rich in Cu and Cu, N in the NiAl phase. The content of I and Al is greater than that of the rich Cu and NiAl phases in martensite, and the separation trend of Cu and NiAl phases at the interface is greater than that of martensite. This is due to the existence of a large number of defects at the interface, which promotes the growth of the precipitate phase and makes the precipitation in the interface and martensite get along with the different stages of growth.
【學位授予單位】:上海大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TG142.1
【相似文獻】
相關期刊論文 前10條
1 李錫武;熊柏青;張永安;華成;李志輝;朱寶宏;劉紅偉;;新型Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr合金單級時效行為研究[J];稀有金屬材料與工程;2009年09期
2 王學敏,周桂峰,楊善武,賀信萊;Cu-Nb-Ni-Cr-Mo鋼的析出硬化[J];北京科技大學學報;2000年01期
3 ;鐵、鎢、鉬、鈷型表面時效硬化合金[J];電鍍與涂飾;2000年01期
4 王均,沈保羅,孫志平,鄒紅,邱紹宇;17-4PH的時效動力學研究[J];四川冶金;2004年01期
5 蘇娟華,董企銘,劉平,李賀軍,康布熙;Cu-Cr-Zr-Mg合金時效組織與性能[J];材料科學與工藝;2004年03期
6 尹桂全,楊才福,呂憶農(nóng),任高強;含銅鋼的時效硬化[J];鋼鐵研究學報;2004年04期
7 李志輝,熊柏青,張永安,朱寶宏,劉紅偉,王鋒;單級時效對7B04預拉伸厚板組織和性能的影響[J];中國有色金屬學報;2005年11期
8 郭鳳蓮;劉宗昌;任慧平;;含1.55%銅高純鋼的時效行為[J];內(nèi)蒙古科技大學學報;2007年01期
9 高琪妹;于曉丹;熊曉航;;預時效對6111鋁合金時效硬化的影響[J];熱加工工藝;2008年22期
10 李榮德;馬歡歡;李潤霞;曲迎東;;Al-4.0Cu合金時效初期原子分布的計算機模擬[J];沈陽工業(yè)大學學報;2008年04期
相關會議論文 前10條
1 熊建芳;;鋼絲處理過程中的時效作用[A];全國金屬制品信息網(wǎng)第22屆年會論文集[C];2010年
2 李德輝;李志成;劉路;高國忠;徐永波;鄒壯輝;;時效對Mg-RE合金性能與結(jié)構的影響[A];2002年材料科學與工程新進展(上)——2002年中國材料研討會論文集[C];2002年
3 曾嬋;劉麗;孫平;王小祥;;貴金屬齒科鑄造合金時效后結(jié)構和性能研究[A];浙江生物醫(yī)學工程學會第九屆年會論文匯編[C];2011年
4 O祝桂合;小野寺龍?zhí)?;低碳鋼的屈服與時效現(xiàn)象的新探索[A];中國金屬學會2003中國鋼鐵年會論文集(4)[C];2003年
5 郭巖;王博涵;侯淑芳;周榮燦;;改進型617鎳基合金時效析出相[A];2013年中國電機工程學會年會論文集[C];2013年
6 王興權;王欣平;廖贊;孫秀霞;;超高強度CuNiMnFe合金的時效特性[A];中國有色金屬學會第十二屆材料科學與合金加工學術年會論文集[C];2007年
7 韓小磊;熊柏青;張永安;李志輝;朱寶宏;王鋒;劉紅偉;;單級時效制度對7150鋁合金組織和性能的影響[A];全國第十四屆輕合金加工學術交流會論文集[C];2009年
8 李曉玲;王秀芳;孫東立;武高輝;;SiC_p/2024Al復合材料的時效硬化行為[A];復合材料:生命、環(huán)境與高技術——第十二屆全國復合材料學術會議論文集[C];2002年
9 楊才福;張永權;;Cu時效硬化鋼中Cu的析出[A];中國特殊鋼年會2005論文集[C];2005年
10 欒佰峰;陳國欽;武高輝;;AlN_p/LY12復合材料的時效硬化行為[A];2000年材料科學與工程新進展(下)——2000年中國材料研討會論文集[C];2000年
相關博士學位論文 前10條
1 王曉姣;Fe-Cu-Ni-Al-Mn鋼中強化相復合析出機制的研究[D];上海大學;2016年
2 張延志;時效對U-5.8wt.%Nb合金結(jié)構和力學性能的影響研究[D];中國工程物理研究院;2015年
3 顧偉;大斷面7050高強鋁合金擠壓及熱處理過程組織與性能研究[D];北京科技大學;2016年
4 孟凡巖;連續(xù)熱壓機馬氏體時效不銹鋼帶的時效、激光焊接和氧化行為研究[D];吉林大學;2016年
5 聶鑫;鑄態(tài)及快速凝固鎂錫和鎂釓鋅合金中析出相的透射電子顯微學研究[D];武漢大學;2015年
6 蘇睿明;噴射成形7075合金RRA處理工藝優(yōu)化與合金時效機理研究[D];沈陽工業(yè)大學;2015年
7 高珍;Al-Cu-Li-Mg合金時效中納米析出相及演變規(guī)律研究[D];湖南大學;2015年
8 劉春輝;汽車用高性能鋁合金強化析出相的演變及調(diào)控[D];湖南大學;2015年
9 周浩;大塑性變形Mg-Gd-Y系合金組織結(jié)構演變和力學性能研究[D];上海交通大學;2015年
10 趙倩;Al-Mg-Si-Zr-XEr合金組織性能及時效析出強化的研究[D];沈陽工業(yè)大學;2016年
相關碩士學位論文 前10條
1 薛丞丞;Ti含量對LF2氣閥合金組織與性能的影響[D];昆明理工大學;2015年
2 熊竟成;Mg-Gd-Y系合金時效析出行為研究[D];北京有色金屬研究總院;2015年
3 吉婉;時效對熱擠壓態(tài)Mg-Zn-Ca/Mg-Zn-Ca-Nd合金力學及腐蝕性能的影響[D];長安大學;2015年
4 石翔宇;熱處理對Al-12.7Si-0.7Mg合金韌性和裂紋擴展的影響[D];東北大學;2014年
5 陶詩文;承壓件用鑄造鋁硅系合金組織與性能研究[D];東南大學;2015年
6 盛首文;飛機壁板時效成形過程壁板結(jié)構的參數(shù)化分析[D];上海工程技術大學;2016年
7 袁明華;彈性元件用鈹青銅熱變形行為及熱處理研究[D];南昌航空大學;2016年
8 黃官偉;靜電場對7075鋁合金時效成形性能的影響研究[D];南昌航空大學;2016年
9 邱躍武;Al-Er高強耐熱導電鋁合金的性能研究[D];鄭州大學;2016年
10 夏泓瑋;固溶工藝和斷續(xù)時效對7150鋁合金組織和力學性能的影響[D];哈爾濱工業(yè)大學;2016年
,本文編號:2165197
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2165197.html