天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

Fe-Cu-Ni-Al-Mn鋼中強(qiáng)化相復(fù)合析出機(jī)制的研究

發(fā)布時(shí)間:2018-08-04 21:23
【摘要】:隨著現(xiàn)代工業(yè)和科學(xué)技術(shù)的不斷發(fā)展,提高鋼鐵材料的強(qiáng)度成為了備受關(guān)注的課題。析出強(qiáng)化是提高鋼鐵材料強(qiáng)度的一種重要的方式。Fe-Cu鋼時(shí)效過程中析出了納米級(jí)的富Cu相,具有明顯的析出強(qiáng)化效果。當(dāng)Fe-Cu鋼中復(fù)合添加Ni、Al、Mn元素時(shí),Fe-Cu-Ni-Al-Mn鋼中含有多元強(qiáng)化相,析出強(qiáng)化更明顯,研究復(fù)合析出強(qiáng)化,對(duì)發(fā)展高強(qiáng)度鋼有重要意義。本文采用維氏顯微硬度(VHN)、光學(xué)顯微鏡(OM)、高分辨透射電鏡(HRTEM)和原子探針層析技術(shù)(APT)等測(cè)試手段,結(jié)合析出動(dòng)力學(xué),分析了Fe-1.5 wt.%Cu、Fe-1.5 wt.%Cu-2 wt.%Mn、Fe-1.5 wt.%Cu-3 wt.%Ni-1wt.%Al和Fe-0.95 wt.%Cu-3.13 wt.%Ni-1.09 wt.%Al-1.87 wt.%Mn四種鋼中強(qiáng)化相的析出過程,研究了鋼中富Cu相和Ni(Al,Mn)相共存時(shí),影響強(qiáng)度的規(guī)律和機(jī)理。主要研究結(jié)果和結(jié)論如下:(1)Mn影響鋼中富Cu相析出的規(guī)律和機(jī)理。等溫時(shí)效過程中,Fe-Cu-Mn鋼比Fe-Cu鋼先達(dá)到硬度峰值,過時(shí)效階段Fe-Cu-Mn鋼的硬度下降速率大于Fe-Cu鋼,表明添加Mn元素加速了析出強(qiáng)化的進(jìn)程;APT結(jié)果顯示,時(shí)效初期,Fe-Cu-Mn鋼比Fe-Cu鋼中富Cu相的數(shù)量密度高,時(shí)效后期,Fe-Cu-Mn鋼比Fe-Cu鋼中富Cu相的尺寸大,數(shù)量密度低,表明Mn元素的添加加快了富Cu相的形核、長(zhǎng)大和粗化速度。Mn降低了富Cu相與基體之間界面能,增加了形核的化學(xué)成分驅(qū)動(dòng)力,因此提高了富Cu相的形核速率;Mn元素的添加改變了Cu的化學(xué)位,加速了Cu的擴(kuò)散速率,從而加速了富Cu相的長(zhǎng)大和粗化。隨著時(shí)效時(shí)間的延長(zhǎng),富Cu相會(huì)由bcc結(jié)構(gòu)向fcc結(jié)構(gòu)轉(zhuǎn)變,此轉(zhuǎn)變過程中會(huì)產(chǎn)生缺陷,大量的Mn原子偏聚于缺陷處,富CuMn相會(huì)發(fā)生調(diào)幅分解,最終形成了片狀富Cu相和片狀富Mn相的交替排列的層狀結(jié)構(gòu)。(2)NiAl相影響鋼中富Cu相析出的規(guī)律和機(jī)理。等溫時(shí)效過程中,Fe-Cu-Ni-Al鋼峰值硬度比Fe-Cu鋼高,硬度峰值持續(xù)時(shí)間長(zhǎng),Ni、Al的加入增強(qiáng)了析出強(qiáng)化效果。相同的時(shí)效時(shí)間,Fe-Cu-Ni-Al鋼中析出相的尺寸均小于Fe-Cu鋼,數(shù)量密度均大于Fe-Cu鋼。Ni、Al的加入提高了時(shí)效初期富Cu相形核率,富Cu相與α-Fe基體的界面為NiAl相的形核提供了質(zhì)點(diǎn)和能量,形成了富Cu相在核心,NiAl相包裹在其外側(cè)的核殼結(jié)構(gòu),這種結(jié)構(gòu)使得析出相比較穩(wěn)定,不易長(zhǎng)大和粗化,從而保持良好的析出強(qiáng)化效果。隨著時(shí)效時(shí)間的進(jìn)一步延長(zhǎng),富Cu相和NiAl相發(fā)生了分離,顯微硬度下降。(3)時(shí)效過程中,Fe-Cu-Ni-Al-Mn鋼中首先析出了球形的富NiAlMnCu團(tuán)簇,隨著時(shí)效時(shí)間的延長(zhǎng),富NiAlMnCu團(tuán)簇分解為富Cu相和Ni(Al,Mn)相,而且這兩個(gè)析出相相互依存。Fe-Cu-Ni-Al-Mn鋼時(shí)效過程中析出相的演化過程為:富NiAlMnCu團(tuán)簇?Ni(Al,Mn)相和富Cu相。不論是Mn的加入,還是Ni,Al的加入都加速了富Cu相的形核,只是,Mn的加入促進(jìn)了富Cu相的長(zhǎng)大和粗化,Ni,Al的加入在一定程度上抑制了富Cu相的長(zhǎng)大和粗化,因此四種鋼形核速度依次為:Fe-Cu-Ni-Al-MnFe-Cu-Ni-AlFe-Cu-MnFe-Cu;長(zhǎng)大速度依次為:Fe-Cu-MnFe-CuFe-Cu-Ni-AlFe-Cu-Ni-Al-Mn;粗化速度為:Fe-Cu-MnFe-CuFe-Cu-Ni-Al-MnFe-Cu-Ni-Al。(4)鋼中兩相區(qū)富Cu相和Ni(Al,Mn)相的析出特征。Fe-Cu-Ni-Al-Mn鋼淬火后不可避免存在殘余奧氏體,500℃時(shí)效1 h后,用APT觀測(cè)到殘余奧氏體中沒有析出相,馬氏體和馬氏體/殘余奧氏體界面處均有析出相的析出,馬氏體中靠近界面處有一層析出貧化區(qū)。界面處析出相的等效半徑和間距均大于馬氏體中的析出相,界面處富Cu相和NiAl相中Cu,Ni和Al的含量均大于馬氏體中的富Cu相和NiAl相,而且界面處富Cu相和NiAl相的分離趨勢(shì)要大于馬氏體,這是因?yàn)榻缑嫣幋嬖诖罅咳毕?促進(jìn)了析出相的長(zhǎng)大,使得界面處和馬氏體中的析出相處于長(zhǎng)大的不同階段。
[Abstract]:With the continuous development of modern industry and science and technology, improving the strength of steel materials has become a subject of great concern. The precipitation strengthening is an important way to improve the strength of steel materials..Fe-Cu steel has been precipitated in the process of aging of Cu and has obvious precipitation strengthening effect. When Fe-Cu steel is added, Ni, Al, Mn elements are added together Fe-Cu-Ni-Al-Mn steel contains multiple intensification phases and precipitation strengthening is more obvious. It is of great significance for developing high strength steel. In this paper, Vivtorinox microhardness (VHN), optical microscope (OM), high resolution transmission electron microscopy (HRTEM) and atomic probe chromatography (APT) are used to analyze Fe-1.5. The precipitation process of wt.%Cu, Fe-1.5 wt.%Cu-2 wt.%Mn, Fe-1.5 wt.%Cu-3 wt.%Ni-1wt.%Al and Fe-0.95 wt.%Cu-3.13 wt.%Ni-1.09 wt.%Al-1.87 wt.%Mn four kinds of steels is studied. The law and mechanism of the influence of the coexistence of the rich phase in the steel are studied. The main results and conclusions are as follows: (1) the precipitation of the rich phase in the steel is affected. In the process of isothermal aging, Fe-Cu-Mn steel reaches the peak of hardness first than that of Fe-Cu steel. The decrease rate of Fe-Cu-Mn steel in over aging stage is greater than that of Fe-Cu steel, which indicates that adding Mn element accelerates the process of precipitation strengthening. APT results show that the number density of Fe-Cu-Mn steel is higher than that of Cu phase in Fe-Cu steel at the early stage of aging, and the later period of aging, Fe-Cu-Mn, Fe-Cu-Mn. The size of Cu phase in steel is larger than that of Fe-Cu steel, and the number density is low. It shows that the addition of Mn elements accelerates the nucleation of the rich Cu phase. The growth and coarsening speed.Mn reduces the interfacial energy between the rich Cu phase and the matrix, increases the chemical composition driving force of the nucleation, thus increases the nucleation rate of the rich Cu phase, and the addition of Mn elements changes the chemical bit of Cu and accelerates the addition of Mn elements. The diffusion rate of Cu accelerates the growth and coarsening of the rich Cu phase. With the prolongation of the aging time, the rich Cu phase will change from the bcc structure to the fcc structure. The transition process will produce defects, a large number of Mn atoms are segregated at the defects, and the rich CuMn phase occurs in amplitude decomposition, and eventually forms the alternating layers of lamellar rich Cu and flaky Mn phase. (2) the law and mechanism of NiAl phase affecting the precipitation of rich Cu phase in steel. During isothermal aging, the peak hardness of Fe-Cu-Ni-Al steel is higher than that of Fe-Cu steel, the peak hardness duration is longer, the addition of Ni and Al strengthens the precipitation strengthening effect. The same aging time, the size of the precipitated phase in Fe-Cu-Ni-Al steel is less than that of Fe-Cu steel, and the quantity density is greater than Fe-Cu. The addition of.Ni and Al increases the nucleation rate of the rich Cu phase in the early aging period. The interface between the rich Cu phase and the matrix of the alpha -Fe provides the particle and energy for the nucleation of the NiAl phase, forming the core shell structure of the rich Cu phase in the core and the NiAl phase in its outer side. This structure makes the precipitate relatively stable, not easy to grow and coarsening, thus maintaining good precipitation enhancement effect. With the further prolongation of the aging time, the rich Cu phase and NiAl phase were separated and the microhardness decreased. (3) in the aging process, the rich NiAlMnCu clusters were first precipitated in Fe-Cu-Ni-Al-Mn steel. With the prolongation of the aging time, the rich NiAlMnCu clusters were decomposed into rich Cu phase and Ni (Al, Mn) phase, and the two precipitates were interdependent on.Fe-Cu-Ni-. The evolution of the precipitated phase in the aging process of Al-Mn steel is: the rich NiAlMnCu cluster? Ni (Al, Mn) Xiang Hefu Cu phase. Whether the addition of Mn, Ni, and Al accelerates the nucleation of the rich Cu phase, but the addition of Mn promotes the growth and coarsening of the rich Cu phase, and therefore, to a certain extent, inhibits the growth and coarsening of rich Cu. Therefore, four kinds of additives have been suppressed to some extent. The velocity of steel nucleation is Fe-Cu-Ni-Al-MnFe-Cu-Ni-AlFe-Cu-MnFe-Cu, and the growth rate is Fe-Cu-MnFe-CuFe-Cu-Ni-AlFe-Cu-Ni-Al-Mn in turn, and the coarsening speed is: the precipitating characteristic of Cu phase and Ni (Al, Mn) phase in Fe-Cu-MnFe-CuFe-Cu-Ni-Al-MnFe-Cu-Ni-Al. (4) steel will inevitably have retained austenite after the quenching of.Fe-Cu-Ni-Al-Mn steel. 50 After 1 h aging at 0 C, there are no precipitates in the retained austenite with APT. The precipitation of martensite and martensite / retained austenite is precipitated, and there is a layer of precipitation and dilution in martensite near the interface. The equivalent radius and spacing of the precipitated phase at the interface are all larger than the precipitates in martensite, and the interface is rich in Cu and Cu, N in the NiAl phase. The content of I and Al is greater than that of the rich Cu and NiAl phases in martensite, and the separation trend of Cu and NiAl phases at the interface is greater than that of martensite. This is due to the existence of a large number of defects at the interface, which promotes the growth of the precipitate phase and makes the precipitation in the interface and martensite get along with the different stages of growth.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG142.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李錫武;熊柏青;張永安;華成;李志輝;朱寶宏;劉紅偉;;新型Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr合金單級(jí)時(shí)效行為研究[J];稀有金屬材料與工程;2009年09期

2 王學(xué)敏,周桂峰,楊善武,賀信萊;Cu-Nb-Ni-Cr-Mo鋼的析出硬化[J];北京科技大學(xué)學(xué)報(bào);2000年01期

3 ;鐵、鎢、鉬、鈷型表面時(shí)效硬化合金[J];電鍍與涂飾;2000年01期

4 王均,沈保羅,孫志平,鄒紅,邱紹宇;17-4PH的時(shí)效動(dòng)力學(xué)研究[J];四川冶金;2004年01期

5 蘇娟華,董企銘,劉平,李賀軍,康布熙;Cu-Cr-Zr-Mg合金時(shí)效組織與性能[J];材料科學(xué)與工藝;2004年03期

6 尹桂全,楊才福,呂憶農(nóng),任高強(qiáng);含銅鋼的時(shí)效硬化[J];鋼鐵研究學(xué)報(bào);2004年04期

7 李志輝,熊柏青,張永安,朱寶宏,劉紅偉,王鋒;單級(jí)時(shí)效對(duì)7B04預(yù)拉伸厚板組織和性能的影響[J];中國(guó)有色金屬學(xué)報(bào);2005年11期

8 郭鳳蓮;劉宗昌;任慧平;;含1.55%銅高純鋼的時(shí)效行為[J];內(nèi)蒙古科技大學(xué)學(xué)報(bào);2007年01期

9 高琪妹;于曉丹;熊曉航;;預(yù)時(shí)效對(duì)6111鋁合金時(shí)效硬化的影響[J];熱加工工藝;2008年22期

10 李榮德;馬歡歡;李潤(rùn)霞;曲迎東;;Al-4.0Cu合金時(shí)效初期原子分布的計(jì)算機(jī)模擬[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2008年04期

相關(guān)會(huì)議論文 前10條

1 熊建芳;;鋼絲處理過程中的時(shí)效作用[A];全國(guó)金屬制品信息網(wǎng)第22屆年會(huì)論文集[C];2010年

2 李德輝;李志成;劉路;高國(guó)忠;徐永波;鄒壯輝;;時(shí)效對(duì)Mg-RE合金性能與結(jié)構(gòu)的影響[A];2002年材料科學(xué)與工程新進(jìn)展(上)——2002年中國(guó)材料研討會(huì)論文集[C];2002年

3 曾嬋;劉麗;孫平;王小祥;;貴金屬齒科鑄造合金時(shí)效后結(jié)構(gòu)和性能研究[A];浙江生物醫(yī)學(xué)工程學(xué)會(huì)第九屆年會(huì)論文匯編[C];2011年

4 O祝桂合;小野寺龍?zhí)?;低碳鋼的屈服與時(shí)效現(xiàn)象的新探索[A];中國(guó)金屬學(xué)會(huì)2003中國(guó)鋼鐵年會(huì)論文集(4)[C];2003年

5 郭巖;王博涵;侯淑芳;周榮燦;;改進(jìn)型617鎳基合金時(shí)效析出相[A];2013年中國(guó)電機(jī)工程學(xué)會(huì)年會(huì)論文集[C];2013年

6 王興權(quán);王欣平;廖贊;孫秀霞;;超高強(qiáng)度CuNiMnFe合金的時(shí)效特性[A];中國(guó)有色金屬學(xué)會(huì)第十二屆材料科學(xué)與合金加工學(xué)術(shù)年會(huì)論文集[C];2007年

7 韓小磊;熊柏青;張永安;李志輝;朱寶宏;王鋒;劉紅偉;;單級(jí)時(shí)效制度對(duì)7150鋁合金組織和性能的影響[A];全國(guó)第十四屆輕合金加工學(xué)術(shù)交流會(huì)論文集[C];2009年

8 李曉玲;王秀芳;孫東立;武高輝;;SiC_p/2024Al復(fù)合材料的時(shí)效硬化行為[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集[C];2002年

9 楊才福;張永權(quán);;Cu時(shí)效硬化鋼中Cu的析出[A];中國(guó)特殊鋼年會(huì)2005論文集[C];2005年

10 欒佰峰;陳國(guó)欽;武高輝;;AlN_p/LY12復(fù)合材料的時(shí)效硬化行為[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國(guó)材料研討會(huì)論文集[C];2000年

相關(guān)博士學(xué)位論文 前10條

1 王曉姣;Fe-Cu-Ni-Al-Mn鋼中強(qiáng)化相復(fù)合析出機(jī)制的研究[D];上海大學(xué);2016年

2 張延志;時(shí)效對(duì)U-5.8wt.%Nb合金結(jié)構(gòu)和力學(xué)性能的影響研究[D];中國(guó)工程物理研究院;2015年

3 顧偉;大斷面7050高強(qiáng)鋁合金擠壓及熱處理過程組織與性能研究[D];北京科技大學(xué);2016年

4 孟凡巖;連續(xù)熱壓機(jī)馬氏體時(shí)效不銹鋼帶的時(shí)效、激光焊接和氧化行為研究[D];吉林大學(xué);2016年

5 聶鑫;鑄態(tài)及快速凝固鎂錫和鎂釓鋅合金中析出相的透射電子顯微學(xué)研究[D];武漢大學(xué);2015年

6 蘇睿明;噴射成形7075合金RRA處理工藝優(yōu)化與合金時(shí)效機(jī)理研究[D];沈陽工業(yè)大學(xué);2015年

7 高珍;Al-Cu-Li-Mg合金時(shí)效中納米析出相及演變規(guī)律研究[D];湖南大學(xué);2015年

8 劉春輝;汽車用高性能鋁合金強(qiáng)化析出相的演變及調(diào)控[D];湖南大學(xué);2015年

9 周浩;大塑性變形Mg-Gd-Y系合金組織結(jié)構(gòu)演變和力學(xué)性能研究[D];上海交通大學(xué);2015年

10 趙倩;Al-Mg-Si-Zr-XEr合金組織性能及時(shí)效析出強(qiáng)化的研究[D];沈陽工業(yè)大學(xué);2016年

相關(guān)碩士學(xué)位論文 前10條

1 薛丞丞;Ti含量對(duì)LF2氣閥合金組織與性能的影響[D];昆明理工大學(xué);2015年

2 熊竟成;Mg-Gd-Y系合金時(shí)效析出行為研究[D];北京有色金屬研究總院;2015年

3 吉婉;時(shí)效對(duì)熱擠壓態(tài)Mg-Zn-Ca/Mg-Zn-Ca-Nd合金力學(xué)及腐蝕性能的影響[D];長(zhǎng)安大學(xué);2015年

4 石翔宇;熱處理對(duì)Al-12.7Si-0.7Mg合金韌性和裂紋擴(kuò)展的影響[D];東北大學(xué);2014年

5 陶詩文;承壓件用鑄造鋁硅系合金組織與性能研究[D];東南大學(xué);2015年

6 盛首文;飛機(jī)壁板時(shí)效成形過程壁板結(jié)構(gòu)的參數(shù)化分析[D];上海工程技術(shù)大學(xué);2016年

7 袁明華;彈性元件用鈹青銅熱變形行為及熱處理研究[D];南昌航空大學(xué);2016年

8 黃官偉;靜電場(chǎng)對(duì)7075鋁合金時(shí)效成形性能的影響研究[D];南昌航空大學(xué);2016年

9 邱躍武;Al-Er高強(qiáng)耐熱導(dǎo)電鋁合金的性能研究[D];鄭州大學(xué);2016年

10 夏泓瑋;固溶工藝和斷續(xù)時(shí)效對(duì)7150鋁合金組織和力學(xué)性能的影響[D];哈爾濱工業(yè)大學(xué);2016年



本文編號(hào):2165197

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2165197.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶56090***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com