高強(qiáng)鋼汽車傳動(dòng)軸管輥彎成型過程管坯變形行為及輥形設(shè)計(jì)方法研究
[Abstract]:The drive shaft tube is an important part of the transmission system. The shaft tube of a large commercial vehicle is usually made of ordinary steel with a yield strength of 480MPa. In order to meet the mechanical performance requirements, the wall thickness of the drive shaft is larger and affects the light weight of the automobile. The mechanical properties of the shaft tube made of high strength steel instead of ordinary steel are good in mechanical properties, energy saving and emission reduction. The high strength steel transmission shaft tube is usually made of roll bending and high frequency welding, in which roll bending is the most basic and important molding process, and it has important influence on the quality of subsequent welding. Therefore, it has important theoretical significance and application value to study the bending forming technology of high strength steel automobile shaft tube roll. In the process of roll bending, the slab deformation is complicated, involving nonlinear material, geometric nonlinearity and contact nonlinearity. High strength steel has the characteristics of high material strength, large resilience, poor plasticity, and difficult welding. Its forming difficulty is larger than that of ordinary steel. There are many factors affecting roll shape of high strength steel, including roll shape design, process parameters and so on, among which roll shape The design is closely related to the deformation process of the tube billet, which has an important influence on the quality of the tube billet. Therefore, the design method of the roll shape and the deformation law of the tube blank in the bending of high strength steel are studied. The relationship between the roll shape and the forming quality in the molding of high strength steel is revealed, and the shape of the springback, the edge state of the tube billet, the quality of the tube billet and the subsequent welding are controlled. This paper mainly studies the roll shape design, the whole deformation behavior and the edge forming rule of the high strength steel shaft tube roll forming. The research object is that the shaft pipe of 120 x 4mm is used as the research object, and the material is 700QZ high strength steel. Based on the ABAQUS simulation software, the modeling method suitable for the bending forming of high strength steel shaft tube is studied. The finite element numerical simulation model of roll forming process is established by using reasonable roll simplification and forming process parameters. Through experiments, the section shape, opening and longitudinal depth of the slab are compared and verified. The axial tube of 134 x 4mm high strength steel is used as the study of the image, and the common double radius method is used in the roll bending forming. The roll shape design is carried out. The deformation law of the slab, the distribution characteristic of stress and strain, the excessive stress and strain in the forming and the interference of the slab are revealed. The first roll shape optimization design scheme is analyzed and proposed, and the design of the roll gap, the vertical roll and the closed roll are improved. The first optimization method can not solve the molding. In the second time optimization method, the W roll shape is designed and applied to the high strength steel shaft tube forming. The combined forming system of double W roll and double radius roller is established, which improves the deformation distribution and the stress concentration in the vertical roll group in the forming process. In this paper, a new method of three radius roll shape design is put forward in this paper. In this paper, a new method of three radius roll shape design is put forward. With the example of the shaft pipe of 134 x 4mm high strength steel, the roll shape is designed in detail. The size of stress and strain, the uniformity of the distribution and the thickness variation of the slab section are systematically analyzed. Law, the stress distribution of the vertical roll group is compared with the forming results of the common double radius method. The study shows that the three radius forming method has obvious advantages in realizing the uniform deformation of the high strength steel plate and improving the stress concentration of the vertical roll group. The application of single pass W and double pass W in the three half diameter forming method are studied, and the double W combination roll is systematically analyzed. The influence of the stress and strain distribution and the stress state of the vertical roll group provides a new idea for the design of the roll shape of the high strength steel transmission shaft. According to the stress concentration problem of the vertical roll group, the deformation of the common double radius, the double W double radius and the three radius forming method in the vertical roll form is analyzed, and the deformation distribution of the slab and the stress concentration in the region are revealed. The relationship between the edge deformation and the edge deformation control in the roll forming process is studied. The influence of the edge deformation roll and the W forming roller on the stress state of the edge of the slab is analyzed and compared. The strain distribution in the outer wall of the solid slab in the double W composite roll is studied, and the relative variation of the inner and outer wall deformation of the slab is proposed. The relative deformation of the inner and outer walls under different forming rollers was compared, and the influence of different initial forming rollers on the parallel butt of the edge was summarized. The contact and force state of the single radius and double radius vertical rollers on the slab were analyzed. The setting of the double radius and three radius vertical rollers was put forward to avoid the stress concentration and the Springback Control. By analyzing the shortcomings of the edge control of the ordinary single radius closed roll, the design method of double radius closed roll shape design considering the length of the slab and realizing the edge control is put forward, which provides a reference for the edge control in the roll bending.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG30;U463.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;日本不斷開發(fā)高強(qiáng)鋼[J];特鋼技術(shù);2001年03期
2 佟鐵印;;本鋼汽車用冷軋加磷高強(qiáng)鋼的研制與開發(fā)[J];本鋼技術(shù);2012年02期
3 ;第三代先進(jìn)高強(qiáng)鋼的開發(fā)思路[J];柳鋼科技;2013年05期
4 ;寶鋼成功軋制世界最薄汽車用超高強(qiáng)鋼[J];四川冶金;2013年06期
5 ;“高強(qiáng)鋼先進(jìn)焊接技術(shù)”國(guó)際論壇 演講摘要[J];電焊機(jī);2014年04期
6 薄鑫濤;;三代高強(qiáng)鋼概念解析[J];熱處理;2014年01期
7 張慧霞;程文華;鄧春龍;王均濤;;疲勞裂紋擴(kuò)展對(duì)高強(qiáng)鋼電化學(xué)性能的影響[J];裝備環(huán)境工程;2011年01期
8 李揚(yáng);劉漢武;杜云慧;張鵬;;汽車用先進(jìn)高強(qiáng)鋼的應(yīng)用現(xiàn)狀和發(fā)展方向[J];材料導(dǎo)報(bào);2011年13期
9 胡猛;韓飛;李茜;王婷;林少挺;周青;;高強(qiáng)鋼動(dòng)態(tài)力學(xué)性能及斷裂行為研究[J];鍛壓技術(shù);2012年06期
10 付玲;喻樂康;付英雄;張文偉;;軸心受壓高強(qiáng)鋼圓管穩(wěn)定承載性能研究[J];中國(guó)工程機(jī)械學(xué)報(bào);2012年04期
相關(guān)會(huì)議論文 前10條
1 孫薊泉;李雙嬌;尹衍軍;蘇嵐;郭錦;;先進(jìn)高強(qiáng)鋼成形過程中本構(gòu)模型研究現(xiàn)狀與發(fā)展[A];2014年全國(guó)鋼材深加工研討會(huì)論文集[C];2014年
2 李俊;;影響高強(qiáng)鋼汽車板發(fā)展的主要問題及對(duì)策措施[A];2006中國(guó)金屬學(xué)會(huì)青年學(xué)術(shù)年會(huì)論文集[C];2006年
3 陶一春;杜林;何曉明;;熱軋相變高強(qiáng)鋼兩段冷卻模式研究[A];全國(guó)冶金自動(dòng)化信息網(wǎng)2011年年會(huì)論文集[C];2011年
4 馮勇;;高強(qiáng)鋼強(qiáng)韌性的控制[A];2007中國(guó)鋼鐵年會(huì)論文集[C];2007年
5 王萬禎;蘇仁權(quán);王鳳;王新堂;;高強(qiáng)鋼刻痕桿低溫?cái)嗔言囼?yàn)[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
6 張忠典;王亞榮;李雙雙;;外加徑向恒定磁場(chǎng)改善高強(qiáng)鋼點(diǎn)焊質(zhì)量[A];第十一次全國(guó)焊接會(huì)議論文集(第1冊(cè))[C];2005年
7 劉躍華;宇慧平;李曉陽;;超高強(qiáng)鋼單點(diǎn)焊結(jié)構(gòu)的疲勞壽命研究[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
8 丁中;刁承民;張海民;劉國(guó);劉建偉;;高強(qiáng)鋼煉鋼生產(chǎn)的工藝研究與應(yīng)用[A];2011年全國(guó)技術(shù)中心建設(shè)與新品開發(fā)研討會(huì)議會(huì)議論文集[C];2011年
9 李永德;李守新;楊振國(guó);柳洋波;陳樹明;李廣義;惠衛(wèi)軍;翁宇慶;;氫含量與高強(qiáng)鋼疲勞強(qiáng)度的相關(guān)性研究[A];第十四屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議論文集[C];2008年
10 丁中;刁承民;張海民;劉國(guó);劉建偉;;高強(qiáng)鋼煉鋼生產(chǎn)的工藝研究與應(yīng)用[A];2011年華東五省煉鋼學(xué)術(shù)交流會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 孫延軍 通訊員尹冉;寶鋼加快高強(qiáng)鋼產(chǎn)品研發(fā)[N];中國(guó)冶金報(bào);2009年
2 嚴(yán)偉明;寶鋼三代超高強(qiáng)鋼量產(chǎn)[N];中國(guó)工業(yè)報(bào);2012年
3 記者 郝薇;太鋼3個(gè)高強(qiáng)鋼新品種試生產(chǎn)成功[N];山西經(jīng)濟(jì)日?qǐng)?bào);2010年
4 首席記者 崔曉農(nóng);太鋼高強(qiáng)鋼坯應(yīng)用實(shí)現(xiàn)新突破[N];山西經(jīng)濟(jì)日?qǐng)?bào);2010年
5 石鷹 王陽軍;太鋼高級(jí)別高強(qiáng)鋼坯應(yīng)用實(shí)現(xiàn)新突破[N];太原日?qǐng)?bào);2010年
6 首席記者 崔曉農(nóng);太鋼高強(qiáng)鋼援日“顯神威”[N];山西經(jīng)濟(jì)日?qǐng)?bào);2011年
7 記者 李郇;加快推進(jìn)本鋼高強(qiáng)鋼項(xiàng)目落地[N];本溪日?qǐng)?bào);2012年
8 文杰;新連退線生產(chǎn)汽車角超高強(qiáng)鋼[N];世界金屬導(dǎo)報(bào);2014年
9 本報(bào)記者 郭小燕;高強(qiáng)鋼推廣須解決四大問題[N];中國(guó)冶金報(bào);2014年
10 本報(bào)通訊員 李忠寶 王利 何蔚;高強(qiáng)鋼仍是汽車板材質(zhì)的首選[N];中國(guó)冶金報(bào);2014年
相關(guān)博士學(xué)位論文 前5條
1 彭雪鋒;高強(qiáng)鋼局部加熱輥壓成形技術(shù)研究與應(yīng)用[D];北京科技大學(xué);2017年
2 朱彬;高強(qiáng)鋼熱成形過程微觀組織及多物理場(chǎng)耦合模擬[D];華中科技大學(xué);2012年
3 崔鉞;含內(nèi)腐蝕缺陷高強(qiáng)鋼輸氣管道剩余強(qiáng)度的評(píng)估方法研究[D];北京交通大學(xué);2015年
4 馮曉九;大瓣片高強(qiáng)鋼球罐殼板成形機(jī)理及本構(gòu)關(guān)系研究[D];哈爾濱工程大學(xué);2004年
5 蔣慶磊;800MPa高強(qiáng)鋼GMAW接頭組織性能及精細(xì)結(jié)構(gòu)研究[D];山東大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 吳雪松;電流輔助熱成形高強(qiáng)鋼細(xì)長(zhǎng)結(jié)構(gòu)件的成形質(zhì)量與組織控制[D];哈爾濱工業(yè)大學(xué);2015年
2 宋小放;強(qiáng)流脈沖電子束處理50BA及30SiMn2MoVA高強(qiáng)鋼的顯微組織及性能研究[D];重慶理工大學(xué);2015年
3 李兵;車身先進(jìn)高強(qiáng)鋼零件無鉚釘鉚接連接及工藝參數(shù)研究[D];吉林大學(xué);2015年
4 李晴;激光—電弧復(fù)合焊高強(qiáng)鋼的微觀組織與拉伸性能關(guān)系研究[D];長(zhǎng)春理工大學(xué);2015年
5 齊玉龍;高強(qiáng)鋼受壓構(gòu)件穩(wěn)定性的理論與試驗(yàn)研究[D];中冶集團(tuán)建筑研究總院;2013年
6 杜敬霞;300M高強(qiáng)鋼熱成形性能研究及應(yīng)用[D];燕山大學(xué);2015年
7 張淥洋;高強(qiáng)鋼激光—電弧復(fù)合焊微觀組織與沖擊性能關(guān)系研究[D];長(zhǎng)春理工大學(xué);2014年
8 丁玉鑫;BR1500HS高強(qiáng)鋼管無模熱彎曲成形的研究[D];哈爾濱工業(yè)大學(xué);2016年
9 唐懷光;兩種不同組織Q690級(jí)低合金高強(qiáng)鋼的磨損性能研究[D];安徽工業(yè)大學(xué);2016年
10 王云鵬;高強(qiáng)鋼表面水性無機(jī)磷酸鹽防護(hù)涂料的制備與性能研究[D];南京航空航天大學(xué);2016年
,本文編號(hào):2159460
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2159460.html