鋁制內(nèi)燃機(jī)缸體內(nèi)壁鐵基涂層的制備及摩擦學(xué)特性的研究
[Abstract]:With the rapid development of the automobile industry, the problem of energy and environmental pollution becomes more and more serious. By reducing the weight of the car and improving the fuel economy, the energy consumption of the automobile can be reduced effectively, and the effect of protecting the environment is effective. Therefore, the automobile production enterprises and the research institutions of various countries are carrying on the related research. More than half of the fuel is consumed by car weight, and more research institutions point out that the car's self weight is reduced by 10% and fuel consumption can be reduced by more than 1/10. More than half of the vehicles are made of aluminum alloy materials to make engines. Although the engine made using aluminum alloy material makes the weight of the car lighten, it can not meet the technical requirements of the high wear resistance of the cylinder, usually using the embedded cast iron cylinder liner or the high silicon aluminum alloy as the cylinder material, but both are stored. On the inner wall of the aluminum alloy cylinder, the coating with the thickness of about 200-300 m is prepared on the inner wall of the aluminum alloy cylinder. The weight of the increase is almost negligible. The wire material used can be chosen flexibly. The spraying and machining can be carried out in turn on the inner wall of the cylinder body, the precision is also guaranteed and the cost is very low. In order to make the inner wall of the aluminum engine cylinder tight and uniform, the coating with high bonding strength and high wear resistance is designed and manufactured, first, a special thermal spraying gun which can be used to spray the body surface of the engine cylinder is designed and manufactured. The gun body can finish the function of rotating spraying, and can ensure the bonding and spraying quality of the spraying layer. 4Cr13,65Mn and 08Mn2Si iron base wire were sprayed to the basic surface. The microstructure and morphology of the coating were observed and analyzed by metallographic microscope and scanning electron microscope. The characteristics of the elements in the coating and the composition of the phase contained in the coating were obtained by means of energy spectrum (EDS) analysis and XRD Atlas. The DPT-5 coloring permeation agent and adsorption medium were used. Mass (imaging agent), observe the permeability of liquid in the pores of the coating, and then get the distribution and morphology of the pore structure in the coating. Using the ImageJ software to get the pore profile picture and calculate the porosity of each coating, then use different stress and wear resistance test in the dry and wet environment by using the high temperature friction and wear test machine of the end face of MMU-5G material. Compared with gray cast iron, the loss weight of the coating, the loss weight of the pin, the friction coefficient of the coating, the gold phase diagram of the coating mark, the analysis of the wear resistance of the coating, combined with the characteristics of the composition of the coating, the characteristics of the pore structure and the porosity, were analyzed. The hardness of the coating, the pore structure in the coating, the size of the porosity and the distribution of the pores were obtained by analysis. The experimental results show that the bonding strength of the coating is related to the porosity of the coating and the ratio of oxide to the coating. The bonding strength of the coating is proportional to the oxide content in the coating and the density of the coating. Under dry friction, the hardness of the coating is hard. The wear of the 65Mn coating with the largest degree is the smallest, and the 08Mn2Si coating with the smallest microhardness is the largest. The oxide content in the coating determines the friction of the coating. The oxide in the coating has obvious lubrication, which increases the wear resistance of the coating. The higher the content of the oxide in the coating, the coating surface is formed during the friction process. The more complete the lubricating film is, the smaller the friction coefficient of the coating is, the friction of the coating is determined by the porosity and the distribution of the pore structure under the oil immersion friction condition. The oil liquid is transported into the pores during the friction process with the surface connected pores, and the oil stored in the friction is continuously transported to the friction interface, thus the effect of friction reduction is obtained. It is concluded that the self-made inner hole spray gun can prepare the coating of the inner wall of the aluminum cylinder, and the pore structure of the particle stacking in the preparation of the coating can play a very good antifriction effect in the actual work of the cylinder body. Therefore, the wear resistance coating of the inner wall of the aluminum engine can be prepared by the arc thermal spraying technology, which can be replaced in the aluminum cylinder. Cast iron cylinder liner or high silicon aluminium alloy is used as cylinder block, which provides a theoretical reference for the fabrication of wear resistant coating on the inner wall of aluminium engine cylinder block.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG174.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊文彬;張立同;成來(lái)飛;華云峰;張鈞;;金屬有機(jī)物化學(xué)氣相沉積法制備銥涂層的形貌與結(jié)構(gòu)分析[J];稀有金屬材料與工程;2006年03期
2 勾昱君;劉中良;;優(yōu)化抑霜涂層的實(shí)驗(yàn)研究[J];陶瓷研究與職業(yè)教育;2006年01期
3 朱佳;冀曉鵑;揭曉武;史明;;封嚴(yán)涂層材料及應(yīng)用[J];材料開(kāi)發(fā)與應(yīng)用;2008年04期
4 斯蒂芬·H·加里法里尼;羅恩·巴納斯;J·克里唐;龍克昌;;航天飛機(jī)用的高粘性涂層的研制[J];稀有金屬合金加工;1981年04期
5 繆興邦;水溶性織物涂層膠的合成[J];化學(xué)世界;1985年03期
6 陳斌,易茂中;封嚴(yán)涂層的抗沖蝕性與沖蝕速度的關(guān)系[J];中南工業(yè)大學(xué)學(xué)報(bào);1998年04期
7 鄭有新;淺談涂層表面顆粒不良現(xiàn)象[J];材料保護(hù);2001年04期
8 閆穎,石子源,劉國(guó)偉;鋅鉻膜涂層的制備研究[J];大連鐵道學(xué)院學(xué)報(bào);2002年04期
9 張瓊,蔡傳榮;鈦陽(yáng)極涂層溶蝕失效的研究[J];電子顯微學(xué)報(bào);2003年06期
10 劉夙偉;李曙;劉陽(yáng);;封嚴(yán)涂層材料及其可刮削性的評(píng)價(jià)[J];中國(guó)表面工程;2009年01期
相關(guān)會(huì)議論文 前10條
1 張瓊;蔡傳榮;;鈦陽(yáng)極涂層溶蝕失效的研究[A];第三屆全國(guó)掃描電子顯微學(xué)會(huì)議論文集[C];2003年
2 王穎;顧卡麗;李健;;智能變色涂層及其應(yīng)用[A];第六屆全國(guó)表面工程學(xué)術(shù)會(huì)議暨首屆青年表面工程學(xué)術(shù)論壇論文集[C];2006年
3 單凱軍;余文莉;徐四清;;家電環(huán)保涂層表面性能檢測(cè)的研究[A];2007中國(guó)鋼鐵年會(huì)論文集[C];2007年
4 李金桂;;無(wú)機(jī)富鋅涂層的誕生和應(yīng)用[A];第二屆全國(guó)重防腐蝕與高新涂料及涂裝技術(shù)研討會(huì)論文集[C];2004年
5 王允夫;陳小英;王紅玲;;高溫合金抗熱震涂層研究[A];中國(guó)硅酸鹽學(xué)會(huì)搪瓷分會(huì)2003年學(xué)術(shù)研討會(huì)論文集[C];2003年
6 劉建華;李蘭娟;李松梅;;鋁合金早期腐蝕預(yù)警光基敏感涂層的研制[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
7 林達(dá)仁;;梅雨期涂層表面泛白現(xiàn)象及其防治[A];中國(guó)電子學(xué)會(huì)生產(chǎn)技術(shù)學(xué)會(huì)第三屆化工學(xué)術(shù)年會(huì)論文匯編(下)[C];1991年
8 龐佑霞;劉厚才;郭源君;;有機(jī)復(fù)合彈性涂層材料的抗磨蝕實(shí)驗(yàn)研究[A];第七屆全國(guó)摩擦學(xué)大會(huì)論文集(二)[C];2002年
9 付前剛;李賀軍;黃劍鋒;史小紅;史波;李克智;;炭/炭復(fù)合材料磷酸鹽涂層的抗氧化性能研究[A];第19屆炭—石墨材料學(xué)術(shù)會(huì)論文集[C];2004年
10 王興原;苗曉;胡志強(qiáng);光紅兵;顧祥宇;;改善無(wú)取向硅鋼環(huán)保涂層表面特性的方法研究[A];高性能電工鋼推廣應(yīng)用交流暨第五次全委工作(擴(kuò)大)會(huì)專(zhuān)題報(bào)告及論文[C];2013年
相關(guān)重要報(bào)紙文章 前6條
1 趙志玲;帶卷粉末涂層新技術(shù)[N];世界金屬導(dǎo)報(bào);2012年
2 趙艷濤 曹壘 陳剛 孫亞娜;沙鋼無(wú)取向硅鋼涂層調(diào)試改進(jìn)工藝[N];世界金屬導(dǎo)報(bào);2014年
3 華凌;美開(kāi)發(fā)出智能過(guò)濾涂層[N];科技日?qǐng)?bào);2012年
4 莫文鑄;防止衣服變臟科學(xué)家研制超疏液材料[N];中國(guó)紡織報(bào);2013年
5 ;建筑幕墻用鋁塑復(fù)合板[N];中國(guó)建材報(bào);2008年
6 王爍 王奇 陳運(yùn)法;玻璃幕墻專(zhuān)用納米自清潔涂層的研究[N];中國(guó)建材報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 林岳賓;多因素耦合作用下α-Al_2O_3阻氚涂層形成規(guī)律及機(jī)理研究[D];南京航空航天大學(xué);2015年
2 李增榮;鋁制內(nèi)燃機(jī)缸體內(nèi)壁鐵基涂層的制備及摩擦學(xué)特性的研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
3 黃海;多孔鈦合金表面HA涂層改性及大動(dòng)物體內(nèi)骨修復(fù)研究[D];第四軍醫(yī)大學(xué);2016年
4 張晶;純鈦表面載LAMA3涂層在種植體—牙齦生物學(xué)封閉形成中的作用[D];浙江大學(xué);2016年
5 朱利安;耐高溫銥/錸涂層制備技術(shù)與性能研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
6 蒲澤林;電熱爆炸噴涂法制備亞微米晶涂層的研究[D];華北電力大學(xué)(北京);2005年
7 檀琳;非共價(jià)鍵合聚合物抗污涂層的制備及應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
8 黃群武;耐候性太陽(yáng)選擇性吸收涂層的研究[D];天津大學(xué);2007年
9 劉紅兵;等離子復(fù)合滲技術(shù)制備氧化物阻氚涂層及其性能研究[D];南京航空航天大學(xué);2010年
10 陳春燕;新型固相微萃取涂層的制備及其在環(huán)境分析中的應(yīng)用[D];湖南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 段晉輝;WS_2-TiB_2固體潤(rùn)滑涂層的制備及性能研究[D];昆明理工大學(xué);2015年
2 王昊;連續(xù)高頻感應(yīng)真空熔覆技術(shù)研究[D];青島理工大學(xué);2015年
3 趙亞窮;聚碳酸酯透明件/納米TiO_2涂層的耐紫外老化及環(huán)境應(yīng)力開(kāi)裂行為研究[D];鄭州大學(xué);2015年
4 王有維;鋁電解槽TiB_2陰極涂層的制備及其性能研究[D];昆明理工大學(xué);2015年
5 辛欣;Ti(Cr)SiC(O)N涂層表面改性硬質(zhì)合金及熱處理對(duì)其機(jī)械性能的影響[D];西南交通大學(xué);2015年
6 劉玉潔;銅介導(dǎo)的多酚涂層用于心血管材料表面改性的研究[D];西南交通大學(xué);2015年
7 邢學(xué)剛;稀土對(duì)鈦合金化不銹鋼表面制備雙層涂層電化學(xué)及力學(xué)性能的影響[D];太原理工大學(xué);2016年
8 王然;涂層對(duì)定向高溫合金力學(xué)性能的影響及其抗熱腐蝕性能的研究[D];江西科技師范大學(xué);2015年
9 許向敏;CrN基涂層的制備及其性能研究[D];江西科技師范大學(xué);2015年
10 馮佳偉;海底管線(xiàn)涂層破損時(shí)陰極保護(hù)數(shù)學(xué)模型的建立及應(yīng)用研究[D];中國(guó)海洋大學(xué);2015年
,本文編號(hào):2159263
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2159263.html