Ti-V-Mo復(fù)合微合金化高強(qiáng)度鋼組織調(diào)控與強(qiáng)化機(jī)理研究
[Abstract]:With the increasing pressure of resources, energy and environment, the development of high strength steel has been paid more and more attention from all over the world, and has been developed into a kind of steel with a wide range of applications. In the various strengthening mechanisms of steel materials, the grain size is very difficult to refine the grain size and the strengthening effect of fine grain when the grain size is refined to 2~3 m. It is difficult to continue to improve, the efficiency of the replacement of solid solution strengthening to improve the strength is relatively low; dislocation strengthening and phase transformation intensification, although increasing the strength obviously, have great damage to the plastic toughness of steel, and precipitation strengthening is a strengthening method of minimum plastic damage except fine crystal strengthening, which is also an important research direction of high strength steel. It is fully utilized, and the precipitation strengthening increment in the traditional high strength steel is generally below 200 MPa. Therefore, increasing the precipitation enhancement increment is the best strengthening method to improve the mechanical properties of the steel. It is the most simple and effective method to improve the increment of precipitation enhancement. Therefore, it is of great theoretical significance and industrial application value to develop a hot rolling high strength steel with a large precipitation enhancement increment with reasonable multicomponent composite microalloying and optimized thermal mechanical control technology. The Ti-V-Mo composite microalloying is used in this paper, and the optimized heat is combined. The mechanical control process, by controlling the rational precipitation of MC phase in austenite and ferrite, is expected to produce hot rolled high strength steel with large precipitation enhancement. Using transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron backscattering (EBSD) and physical and chemical phase analysis (Physics-chemical phase analysis), and other experimental means of Ti-V-MO steel The main research contents and results are as follows: the thermodynamic model of the (M1, M2, M3) X type four element composite precipitates in the iron matrix was established, and it was successfully applied in the Ti-V-Mo composite microalloyed steel. The thermodynamics, kinetics and low temperature coarsening of MC phase in Ti steel, V steel, Ti-V steel, Ti-Mo steel and Ti-V-Mo steel were in the iron matrix. The results show that the Ti-V-Mo composite microalloying reduces the potential precipitation of the MC phase in austenite without increasing the total solid solution temperature, increases the precipitation of the MC phase in the ferrite and reduces the fastest precipitation temperature of the MC in the austenite, and the MC phase in the low-temperature ferrite has a strong resistance to coarse. The Ti.V-Mo composite microalloying is the best microalloying system for the enhancement of the precipitation enhancement. The relationship between the MoC and the austenite and ferrite interface between the austenite and the ferrite is calculated, and the basis for the thermodynamic calculation of the precipitated phase containing Mo is provided. The influence of the precipitation kinetics on the C phase in the body (Ti, V, Mo) and the precipitation kinetics induced by the austenite phase transition induced precipitation on the ferrite (Ti, V, Mo) C phase. The results show that the deformation of austenite can be increased by increasing the deformation energy storage of austenite, promoting the precipitation of the Ti, V, Mo), preventing the growth of the austenite grain, and increasing the precipitation in the austenite. The maximum nucleation rate and nucleation rate precipitated in the ferrite (Ti, V, Mo) C precipitated and the nucleation rate increased, which was beneficial to obtain the nanoscale precipitates with larger precipitation density, and the precipitation enhancement increment tended to be greater. The maximum nucleation temperature of (Ti, V, Mo) C in the ferrite was estimated at 630~650, and the fastest precipitation temperature was 720 under the actual production conditions. -740 C provides theoretical guidance for obtaining fine ferrite grain and larger precipitation enhancement increment. The influence of finishing rolling temperature, cooling rate and coiling temperature on the microstructure and properties of Ti-V-Mo steel is discussed. The specific process parameters of the best mechanical properties of the high Ti-V-Mo steel under the laboratory conditions are obtained. The variation of the composition of C particles at different stages (Ti, V, Mo) was investigated. The results showed that the final rolling temperature was 800~850 C, the cooling rate was higher than 20 C, and the overall mechanical properties of high Ti-V-Mo steel were the best when the coiling temperature was 600~625 degrees C. The precipitation phase was mainly V and Ti content was low at 600 and 650 C, at 500 and 550. When coiling, the precipitated phase is mainly Ti, and the content of V is low. Through the optimized thermal mechanical control technology, the tensile strength and yield strength are 1134 MPa and 1080 MPa respectively. The post fracture elongation rate and the uniform elongation rate are 13.2% and 6.8% respectively, and the precipitation enhancement increment is up to 444~487 MPa, which breaks through the tradition. The increment limit of precipitation intensification for high strength ferrite steel is calculated and the strengthening increment of high Ti-V-Mo composite microalloyed hot rolled high strength steel at different coiling temperatures is estimated and analyzed. The influence of coiling temperature on yield strength and MC phase particles on uniform plasticity is discussed.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG142.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;俄研究硼微合金化工藝[J];鐵合金;2000年06期
2 東濤,付俊巖;試論我國鋼的微合金化發(fā)展方向[J];中國冶金;2002年05期
3 ;首鋼研制出新型微合金鋼筋[J];煉鋼;2002年03期
4 梅洪生;微合金化應(yīng)用與控制評述[J];特鋼技術(shù);2003年01期
5 李鈺;大衛(wèi)·米爾本;;釩微合金化鍛造鋼[J];鋼鐵釩鈦;2013年04期
6 馬捷;低碳微合金化鑄鋼[J];鑄造;1990年02期
7 ;鈮、釩微合金緊固體鋼的研究[J];鋼鐵研究學(xué)報;1995年01期
8 李學(xué)富;65Г微合金化提高其性能[J];冶金標(biāo)準(zhǔn)化與質(zhì)量;1996年09期
9 董寅生,蘇華欽,梅建平,劉傳博;中碳鑄鋼微合金化的研究[J];東南大學(xué)學(xué)報;1997年05期
10 胡心彬,李麟,吳曉春;鈮微合金化在特殊鋼中的應(yīng)用[J];金屬熱處理;2003年06期
相關(guān)會議論文 前10條
1 裴陳新;王立濤;裴英豪;董梅;施立發(fā);;鈦、鈮微合金化對磁極鋼性能影響研究[A];2013釩鈦高強(qiáng)鋼開發(fā)與應(yīng)用技術(shù)交流會論文集[C];2013年
2 馬志英;胡志軍;楊弋濤;;低碳微合金化鑄鋼的研制與性能測試[A];第十二屆全國鑄造年會暨2011中國鑄造活動周論文集[C];2011年
3 王洪利;劉宏玉;王瑞敏;周鵬;黃_g;;簾線鋼微合金化后的組織與性能研究[A];2011金屬制品行業(yè)技術(shù)信息交流會論文集[C];2011年
4 肖乃成;魏國強(qiáng);唐田華;;HRB335Nb鈮微合金化鋼筋的開發(fā)[A];2007年度泛珠三角十一。▍^(qū))煉鋼連鑄年會論文專輯[C];2007年
5 李劍華;;鈮微合金化HRB400帶肋鋼筋的生產(chǎn)實(shí)踐[A];2009年河北省冶金學(xué)會煉鋼—連鑄技術(shù)與學(xué)術(shù)年會論文集[C];2009年
6 周玉麗;王全禮;魯麗燕;邸全康;李艷平;劉健;張崴;;非微合金化HRB400鋼筋生產(chǎn)技術(shù)研究[A];2009全國建筑鋼筋生產(chǎn)、設(shè)計(jì)與應(yīng)用技術(shù)交流研討會會議文集[C];2009年
7 龔慶華;吳保橋;;BS55C H型鋼V—N微合金化的試驗(yàn)研究[A];中國金屬學(xué)會第一屆青年學(xué)術(shù)年會論文集[C];2002年
8 陳偉;趙宇;張衛(wèi)強(qiáng);庾郁梅;李金柱;施哲;;采用富氮釩微合金化生產(chǎn)大規(guī)格HRB500鋼筋[A];2013釩鈦高強(qiáng)鋼開發(fā)與應(yīng)用技術(shù)交流會論文集[C];2013年
9 陳學(xué)文;毛新平;李烈軍;鐘志永;莊漢洲;許傳芬;;Ti微合金化高強(qiáng)耐候鋼的成分設(shè)計(jì)研究[A];2013廣東材料發(fā)展論壇——戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展與新材料科技創(chuàng)新研討會論文摘要集[C];2013年
10 張小雪;劉蘭俊;李永紅;;微合金化對高碳當(dāng)量灰鐵組織的影響[A];第十三屆21。ㄊ、區(qū))4市鑄造會議暨第七屆安徽省鑄造技術(shù)大會論文集[C];2012年
相關(guān)重要報紙文章 前10條
1 王文軍 東濤;鈮微合金化工程用鋼[N];世界金屬導(dǎo)報;2014年
2 王慶;釩氮微合金化前景廣闊[N];中國冶金報;2002年
3 本報記者 王慶;釩氮微合金化新途徑[N];中國冶金報;2004年
4 周一平 董雅君;大力發(fā)展釩微合金化先進(jìn)鋼鐵材料實(shí)現(xiàn)鐵道車輛用鋼升級換代[N];世界金屬導(dǎo)報;2004年
5 ;鈮微合金化技術(shù)發(fā)展歷程及其在長型材中應(yīng)用[N];世界金屬導(dǎo)報;2005年
6 戴維·米爾本 李鈺;釩微合金化工藝在生產(chǎn)高強(qiáng)度抗震鋼筋方面的冶金優(yōu)勢[N];世界金屬導(dǎo)報;2010年
7 本報記者 夏杰生;發(fā)展微合金化 圓鋼鐵強(qiáng)國夢[N];中國冶金報;2001年
8 楊雄飛;現(xiàn)代高強(qiáng)度鈮微合金化結(jié)構(gòu)鋼[N];世界金屬導(dǎo)報;2013年
9 ;鈮微合金化汽車板[N];世界金屬導(dǎo)報;2006年
10 東海 付俊巖;微合金化——現(xiàn)代鋼組織細(xì)化和性能控制的核心[N];中國冶金報;2004年
相關(guān)博士學(xué)位論文 前2條
1 張可;Ti-V-Mo復(fù)合微合金化高強(qiáng)度鋼組織調(diào)控與強(qiáng)化機(jī)理研究[D];昆明理工大學(xué);2016年
2 余式昌;微合金化奧氏體氣閥鋼的組織和性能研究[D];東南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 李韶雨;昆鋼微合金鐵粉的超細(xì)化制備[D];昆明理工大學(xué);2015年
2 邢清源;5356鋁合金電磁連鑄、凈化和微合金化工藝研究[D];大連理工大學(xué);2015年
3 余愛武;Ti、Zr復(fù)合微合金化對純鋁組織和性能的影響[D];南昌航空大學(xué);2014年
4 呂昌略;微合金化及熱軋工藝對鋁硅鎂基型材組織和性能的影響[D];東南大學(xué);2015年
5 付博;釩氮微合金化77B、82B鋼組織和性能的研究[D];昆明理工大學(xué);2009年
6 魏勝輝;微合金化對鑄鋼組織和力學(xué)性能的影響[D];河北科技大學(xué);2009年
7 鄒航;微合金化高強(qiáng)度鋼研究[D];武漢科技大學(xué);2012年
8 吳毅;V/Ti微合金化對中碳鋼組織結(jié)構(gòu)及機(jī)械性能影響機(jī)制研究[D];哈爾濱工業(yè)大學(xué);2010年
9 徐斌;高強(qiáng)度抗震鋼筋V-Cr復(fù)合微合金化的實(shí)驗(yàn)研究[D];武漢科技大學(xué);2011年
10 康殿才;微合金化HRB400生產(chǎn)工藝的優(yōu)化研究[D];青島理工大學(xué);2013年
,本文編號:2153668
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2153668.html