針對(duì)直紋面表面結(jié)構(gòu)檢測(cè)的探頭六自由度定位方法研究
[Abstract]:With the continuous development of the advanced manufacturing field, the machining quality of the parts is also put forward higher requirements, surface structure as an important indicator of the quality of parts processing, Accurate and effective detection has become an important prerequisite for the development of advanced manufacturing equipment. Although the existing surface structure measurement technology can meet the inspection requirements of most parts, but for complex straight surface parts, such as blades, wings, impellers and other important parts in the manufacturing field, There are still some limitations in measuring its surface structure, such as the limited measuring area, the impossibility of fixed-point measurement and the effect of motion error on measuring accuracy. In order to solve the above problems, this paper presents a six-degree-of-freedom positioning system which can be used to detect the surface structure of a straight surface. A series of researches have been carried out around the six degrees of freedom positioning of the probe in the measurement process. The main contents of this paper include: 1. According to the standard inspection method of surface structure, combined with the profile characteristics of straight surface and the machining mechanism of side milling, the inspection method of surface structure of straight grain surface is determined. This paper analyzes the spatial interference and positioning problem of the probe in the process of measuring the straight surface of the common detecting equipment, and puts forward a six degree of freedom positioning system which uses the transverse scanning probe to detect the surface structure of the straight surface. Aiming at the problem of angle deviation in the direction of the probe's actual positioning attitude, the influence of each angle deviation on the accuracy of measurement results is analyzed by numerical method. According to the requirement of probe positioning with six degrees of freedom, according to the processing method of locating the points to be measured by the parameter equation of straight line surface, the corresponding relationship between the parameter equation (UV) coordinate and UV texture coordinate is established by using OpenGL 3D modeling technology. In this paper, a method of screen cursor positioning to be measured based on model interaction is proposed, which can directly locate the points to be measured on the straight grain surface and obtain the information of six positions and postures, aiming at the problem that it can not be measured at a fixed point. Furthermore, a new method of numerical input location based on model interaction is proposed, which can solve the problem by manually inputting the coordinates of the points to be measured. According to the realization principle of the two methods, the algorithms of model file reading, model interactive display, triangulation and ray-intersection pick-up are designed respectively. According to the motion control mode of the system, the running flow of the probe positioning is designed, the kinematics model of the system is constructed by using the theory of multi-body system, and the inverse kinematics analysis of the system is completed. The displacement required for the probe to locate to the point to be measured is determined, and the system machine coordinate system origin and workpiece origin are set up by using the ruler and 3D edge-finder respectively, and the probe positioning datum .4is constructed. Based on the OpenGL interface of VS2010 and the dynamic link library of motion control card, the control software is developed to realize the function of locating the point to be measured on the straight surface and the automatic position measurement of the probe, and the correctness test of each function of the software is completed by using the black box test method. With the help of the control software, the fixed point repeated measurement experiment and the return point repeated measurement experiment of the positioning system were carried out to verify the accuracy of the system.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG80
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 司劍勛;姚松麗;任宏利;楊傳智;;基于光切法的表面粗糙度的智能化測(cè)量[J];機(jī)械工程師;2015年09期
2 劉國(guó)田;宋瑞東;李松;閻長(zhǎng)罡;;基于CATIA的葉片曲面造型技術(shù)研究[J];現(xiàn)代機(jī)械;2015年02期
3 葉帥;游有鵬;邢永彥;;基于OpenGL的三維模型交互控制研究[J];機(jī)械設(shè)計(jì)與制造工程;2015年01期
4 劉鵠然;劉全紅;;切觸在側(cè)銑加工葉輪直紋面上的應(yīng)用[J];浙江科技學(xué)院學(xué)報(bào);2013年05期
5 ;雷尼紹推出高性能葉片測(cè)量和分析工具套件[J];國(guó)防制造技術(shù);2013年04期
6 ;發(fā)展先進(jìn)裝備制造業(yè)——摘自《工業(yè)轉(zhuǎn)型升級(jí)規(guī)劃(2011—2015年)》[J];制造技術(shù)與機(jī)床;2012年03期
7 劉恒彪;周亞杰;王昌靈;;雙波長(zhǎng)數(shù)字散斑相關(guān)法表面粗糙度測(cè)量[J];光學(xué)學(xué)報(bào);2011年04期
8 張彥春;郝建國(guó);呂旭志;;表面結(jié)構(gòu)測(cè)量方法的分類[J];中國(guó)儀器儀表;2009年11期
9 吳建昌;師五喜;;幾種常見(jiàn)的表面粗糙度儀[J];儀器儀表用戶;2009年03期
10 王政平;張錫芳;張艷娥;;表面粗糙度光學(xué)測(cè)量方法研究進(jìn)展[J];傳感器與微系統(tǒng);2007年09期
相關(guān)博士學(xué)位論文 前3條
1 李紹東;中國(guó)裝備制造業(yè)先進(jìn)水平實(shí)證研究[D];遼寧大學(xué);2011年
2 潘曉彬;表面粗糙度測(cè)量關(guān)鍵技術(shù)研究[D];浙江大學(xué);2011年
3 王生懷;區(qū)域表面結(jié)構(gòu)非接觸測(cè)量與特征評(píng)定方法研究[D];華中科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 莊文浩;側(cè)銑直紋面的表面微觀結(jié)構(gòu)檢測(cè)及評(píng)價(jià)方法研究[D];電子科技大學(xué);2016年
2 陳果;基于斜射式散射法的曲表面粗糙度檢測(cè)原理及系統(tǒng)研究[D];南京航空航天大學(xué);2015年
3 李疆;多軸機(jī)器人運(yùn)動(dòng)控制系統(tǒng)的研究與開(kāi)發(fā)[D];南京航空航天大學(xué);2014年
4 李琳茹;基于OpenGL的CNC上層軟件的研究與實(shí)現(xiàn)[D];華南理工大學(xué);2012年
5 楊波;基于白光干涉的觸針式表面粗糙度測(cè)量技術(shù)的研究[D];華中科技大學(xué);2012年
6 陳建超;超精密加工表面粗糙度測(cè)量方法對(duì)比及功率譜密度評(píng)價(jià)[D];哈爾濱工業(yè)大學(xué);2009年
7 蘭詩(shī)濤;自由曲面接觸式測(cè)量方法研究與原型系統(tǒng)研制[D];浙江大學(xué);2004年
,本文編號(hào):2126350
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2126350.html