超高壓水射流切割機(jī)增壓器性能有限元分析
本文選題:增壓器 + 自增強(qiáng)��; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:超高壓水射流技術(shù)是近30年來(lái)發(fā)展起來(lái)的一種新興技術(shù),在包括農(nóng)業(yè)工程在內(nèi)的工業(yè)各領(lǐng)域得到了廣泛的應(yīng)用。作為超高壓水射流設(shè)備的核心部件,增壓器對(duì)整個(gè)超高壓水射流設(shè)備的性能有著重要影響。我國(guó)對(duì)其性能的研究與國(guó)外相比還存在較大的差距,而國(guó)外處于技術(shù)保密的原因,公布的資料非常少,從國(guó)內(nèi)企業(yè)到國(guó)外公司參觀交流了解到增壓器的新產(chǎn)品開(kāi)發(fā)已全面采用CAE技術(shù)。因此,采用CAE技術(shù)進(jìn)行增壓器性能的研究對(duì)提升企業(yè)新產(chǎn)品的開(kāi)發(fā)十分迫切。本文以某企業(yè)的超高壓水射流切割設(shè)備的增壓器為研究對(duì)象,采用有限元分析技術(shù)對(duì)400MPa與600MPa增壓器進(jìn)行應(yīng)力分析與疲勞壽命性能分析,主要研究工作及成果如下:(1)闡述了超高壓水射流設(shè)備的液壓原理和增壓器的工作原理,得到了高壓缸筒體的應(yīng)力分布規(guī)律,介紹了高壓容器自增強(qiáng)理論;探討了增壓器有限元性能分析軟件的選擇原則并給出了增壓器有限元性能分析的技術(shù)路線方案;(2)對(duì)高壓缸與堵塞進(jìn)行自增強(qiáng)有限元分析,在此基礎(chǔ)上建立了400MPa增壓器裝配體有限元模型。對(duì)400MPa增壓器進(jìn)行有限元分析,得到了380MPa和400MPa工作壓力下的最大應(yīng)力分別為532.864MPa和545.367MPa。結(jié)果表明:高壓缸與缸蓋連接一端的內(nèi)壁端部以及高壓缸壁厚1/4-1/3區(qū)域應(yīng)力較大,在交變載荷長(zhǎng)期循環(huán)作用下容易發(fā)生疲勞破壞;端蓋和缸蓋螺紋連接處應(yīng)力分析結(jié)果較大,可能會(huì)發(fā)生咬合現(xiàn)象;堵塞的最大應(yīng)力值均出現(xiàn)在通氣孔交接處,此處由于應(yīng)力集中易發(fā)生疲勞破壞。這些與企業(yè)現(xiàn)有性能測(cè)試實(shí)驗(yàn)十分吻合。(3)利用MSC.Fatigue進(jìn)行400MPa增壓器的疲勞壽命分析,得到了在380MPa工作壓力下增壓器的疲勞壽命分析結(jié)果為8.83×106次循環(huán),工作時(shí)間為2453小時(shí);在400MPa工作壓力作用下,增壓器的疲勞壽命分析結(jié)果為6.4×106次循環(huán),工作時(shí)間為1775小時(shí)。這些與企業(yè)實(shí)際運(yùn)行壽命較好的吻合,達(dá)到了400MPa增壓器實(shí)際工作壽命需求。(4)建立了600MPa增壓器的有限元模型,通過(guò)對(duì)1080MPa、970MPa、950MPa、940MPa、920MPa、900MPa六種自增強(qiáng)壓力下的分析結(jié)果進(jìn)行對(duì)比,確定了最佳自增強(qiáng)壓力約為970MPa,與理論計(jì)算獲得的最佳自增強(qiáng)壓力970.25MPa相符合。接著探討了增壓器裝配體的預(yù)緊力,為后續(xù)應(yīng)力與疲勞壽命有限元分析工作奠定基礎(chǔ)。(5)對(duì)600MPa增壓器進(jìn)行有限元分析,得到了600MPa和560MPa工作壓力下的最大應(yīng)力分別為564.668MPa和554.885MPa。結(jié)果表明:高壓缸與堵塞連接的端部以及高壓缸壁厚1/4-1/3區(qū)域存在較大應(yīng)力,容易發(fā)生疲勞破壞;螺桿和螺母的應(yīng)力值沒(méi)有達(dá)到材料的屈服強(qiáng)度,不易發(fā)生拉斷及咬合現(xiàn)象;端蓋和缸蓋的應(yīng)力值也未達(dá)到材料的屈服強(qiáng)度,因此不易發(fā)生疲勞破壞。(6)利用MSC.Fatigue進(jìn)行600MPa增壓器的疲勞壽命分析,得到了在預(yù)緊力96000N、工作壓力600MPa作用下的疲勞壽命分析結(jié)果為4.46×106次循環(huán),工作時(shí)間為929小時(shí);在預(yù)緊力90000N、工作壓力560MPa作用下的疲勞壽命分析結(jié)果為6.06×106次循環(huán),工作時(shí)間為1262小時(shí)。這些結(jié)果說(shuō)明,現(xiàn)有企業(yè)新設(shè)計(jì)的增壓器均達(dá)不到增壓器至少工作1500小時(shí)以上的要求。最后針對(duì)600MPa增壓器疲勞壽命無(wú)法達(dá)到要求的問(wèn)題,提出了更換高壓缸材料及改進(jìn)高壓缸結(jié)構(gòu)兩種改進(jìn)措施,為企業(yè)提供參考。本文400MPa有限元應(yīng)力分析與疲勞壽命分析與現(xiàn)有企業(yè)性能測(cè)試實(shí)驗(yàn)結(jié)果對(duì)比證明有限元分析技術(shù)應(yīng)用在高壓容器性能分析上是可靠的,也有力說(shuō)明CAE技術(shù)可以是增壓器開(kāi)發(fā)必不可缺少的一種技術(shù)手段。另外為企業(yè)驗(yàn)證了新開(kāi)發(fā)的一個(gè)600MPa增壓器的可行性問(wèn)題,為企業(yè)降低了投資風(fēng)險(xiǎn)。
[Abstract]:Ultra high pressure water jet technology is a new technology developed in the past 30 years. It has been widely used in various fields including agricultural engineering. As the core component of UHP water jet equipment, supercharger has an important influence on the performance of the UHP water jet equipment. There is a larger gap than that, and the reasons for the technology confidentiality abroad, the published information is very small, from domestic enterprises to foreign companies to understand the new product development of supercharger has been fully adopted CAE technology. Therefore, the use of CAE technology to improve the performance of turbocharger is very urgent to promote the development of new products. Taking the supercharger of the ultra high pressure water jet cutting equipment of a certain enterprise as the research object, the stress analysis and fatigue life performance analysis of 400MPa and 600MPa supercharger are carried out by the finite element analysis technology. The main research work and results are as follows: (1) the hydraulic principle of the UHP water jet equipment and the working principle of the supercharger are expounded. The stress distribution law of the cylinder body is introduced, the self reinforcement theory of high pressure vessel is introduced, the selection principle of the performance analysis software of the supercharger finite element is discussed and the technical route scheme of the performance analysis of the supercharger is given. (2) the self reinforcement finite element analysis of the high pressure cylinder and the blockage is carried out, and the assembly body of the 400MPa supercharger is established on this basis. Finite element analysis of the 400MPa supercharger is carried out. The maximum stress under the working pressure of 380MPa and 400MPa is 532.864MPa and 545.367MPa., respectively. The results show that the end of the inner wall at the end of the high pressure cylinder and the cylinder head and the thick 1/4-1/3 area of the high pressure cylinder wall are more stress, and it is easy to wear out under the long-term cyclic loading of the alternating load. The stress analysis results of the end cover and the cylinder head thread connection are large, and the occlusal phenomenon may occur. The maximum stress value of the blockage appears at the junction of the air hole and the stress concentration is easy to occur. These are in good agreement with the existing performance test experiments of the enterprise. (3) the fatigue life of the 400MPa supercharger is carried out by MSC.Fatigue. The results of the fatigue life analysis of the supercharger under the working pressure of 380MPa are 8.83 x 106 cycles and the working time is 2453 hours. Under the action of 400MPa working pressure, the fatigue life analysis result of the supercharger is 6.4 x 106 cycles and the working time is 1775 hours. These are in good agreement with the actual operating life of the enterprise, and the results are in good agreement with the actual operation life of the enterprise. The actual working life demand of the 400MPa supercharger. (4) the finite element model of the 600MPa supercharger is established. By comparing the analysis results under the six self reinforcing pressures of 1080MPa, 970MPa, 950MPa, 940MPa, 920MPa and 900MPa, the optimum self reinforcement pressure is determined to be about 970MPa, which is in accordance with the best self reinforcing pressure 970.25MPa phase obtained from the theoretical calculation. The pretightening force of the assembly body of the supercharger is discussed. (5) the finite element analysis of the 600MPa supercharger is carried out. The maximum stress under the working pressure of 600MPa and 560MPa is 564.668MPa and 554.885MPa., respectively: the end of the high pressure cylinder and the plug connection and the high pressure cylinder The wall thickness 1/4-1/3 region has large stress and fatigue damage easily; the stress value of screw and nut does not reach the yield strength of the material, and it is not easy to break and bite. The stress value of the end cover and cylinder head is not reached the yield strength of the material, so it is not easy to cause fatigue damage. (6) the fatigue of the 600MPa supercharger is used by MSC.Fatigue. Fatigue life analysis shows that the fatigue life analysis results under the pretightening force 96000N and working pressure 600MPa are 4.46 x 106 cycles, working time is 929 hours, and the fatigue life analysis results under the pretightening force 90000N and working pressure 560MPa are 6.06 x 106 cycles and the working time is 1262 hours. These results show that the existing enterprise The supercharger of the new design can not reach the requirement of at least 1500 hours for the supercharger. Finally, aiming at the problem that the fatigue life of the 600MPa supercharger is unable to meet the requirements, two improvement measures for replacing the high pressure cylinder material and improving the high pressure cylinder structure are put forward to provide the reference for the enterprise. The stress analysis and fatigue life analysis of the finite element method and the fatigue life analysis in this paper are made in this paper. The comparison of the existing performance test results shows that the application of the finite element analysis technology is reliable on the performance analysis of the high pressure vessel. It also proves that the CAE technology can be a technical means that the turbocharger development must not be lacking. In addition, the feasibility of a newly developed 600MPa supercharger is verified by the enterprise, and the enterprise is reduced to the enterprise. Investment risk.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG48
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周思柱;嚴(yán)奉林;李寧;陸英娜;王鵬;易文君;呂博;;超高壓閥體自增強(qiáng)及疲勞壽命分析[J];液壓與氣動(dòng);2014年02期
2 姚偉;;淺談CAE技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J];科技創(chuàng)新導(dǎo)報(bào);2011年27期
3 袁格俠;劉宏昭;范彩霞;王娟平;王勝;;自增強(qiáng)超高壓容器殘余應(yīng)力分析[J];中國(guó)機(jī)械工程;2011年05期
4 賈紅光;;基于ANSYS的厚壁圓筒的彈塑性應(yīng)力分析[J];青海大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
5 朱瑞林;;圓筒形壓力容器自增強(qiáng)若干問(wèn)題研究[J];機(jī)械工程學(xué)報(bào);2010年06期
6 傅彩虹;;運(yùn)用CAE技術(shù)的有限元分析[J];煙臺(tái)職業(yè)學(xué)院學(xué)報(bào);2009年01期
7 高軍偉;謝光偉;周后俊;周魁;;自增強(qiáng)技術(shù)的研究[J];機(jī)械研究與應(yīng)用;2008年06期
8 趙玉生;趙俊芳;;初探食品工業(yè)中的超高壓滅菌技術(shù)[J];食品工程;2006年04期
9 熊珍兵;羅會(huì)信;;基于HyperMesh的有限元前處理技術(shù)[J];排灌機(jī)械;2006年03期
10 張于賢;;水射流切割技術(shù)中高壓缸的設(shè)計(jì)研究[J];煤礦機(jī)械;2006年05期
相關(guān)博士學(xué)位論文 前2條
1 張鳳蓮;磨料水射流切割工程陶瓷機(jī)理及關(guān)鍵技術(shù)的研究[D];大連交通大學(xué);2010年
2 張于賢;超高壓容器中的自增強(qiáng)理論的研究及應(yīng)用[D];重慶大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉睿穎;超高壓射流技術(shù)用于啤酒滅菌的可行性研究[D];西南交通大學(xué);2012年
2 耿鵬飛;高壓水射流切割工藝參數(shù)的研究[D];燕山大學(xué);2012年
3 章宏令;超高壓厚壁容器中的自增強(qiáng)機(jī)理的研究[D];安徽理工大學(xué);2011年
4 王海波;超高壓水射流裝置液壓系統(tǒng)的仿真研究[D];杭州電子科技大學(xué);2011年
5 孫書(shū)蕾;水射流增壓系統(tǒng)及機(jī)床結(jié)構(gòu)分析[D];西華大學(xué);2010年
6 姜學(xué)艷;GYF300型超高壓水晶釜筒體自增強(qiáng)處理有限元仿真與殘余應(yīng)力分析[D];內(nèi)蒙古工業(yè)大學(xué);2007年
7 董慶華;數(shù)控高壓水射流切割機(jī)的研究與設(shè)計(jì)[D];合肥工業(yè)大學(xué);2007年
8 楊桂林;磨料水射流切割斷面質(zhì)量控制的研究[D];西華大學(xué);2006年
9 賈晶晶;超高壓容器自增強(qiáng)損傷研究[D];大慶石油學(xué)院;2006年
10 吳軍;基于有限元技術(shù)的增壓器優(yōu)化設(shè)計(jì)與分析[D];東南大學(xué);2006年
,本文編號(hào):2116777
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2116777.html