天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 鑄造論文 >

MgAgSb基合金的組織結(jié)構(gòu)與熱電性能

發(fā)布時間:2018-07-07 08:55

  本文選題:熱電材料 + MgAgSb合金; 參考:《哈爾濱工業(yè)大學》2017年博士論文


【摘要】:MgAgSb合金在300~548K溫度區(qū)間具有較低的本征熱導率,但載流子濃度較低,尚未達到最佳范圍,功率因子和熱電優(yōu)值仍有較大提升空間。此外,該合金的電熱輸運機制尚不清楚,制約進一步的性能優(yōu)化。本文主要通過元素摻雜增大MgAgSb基合金的載流子濃度,提高功率因子和熱電優(yōu)值。利用X射線衍射儀、透射電子顯微鏡、Seebeck系數(shù)/電導率綜合測試系統(tǒng)、閃光導熱儀和綜合物性測量系統(tǒng)等手段主要研究了燒結(jié)溫度、合金成分和Mg位摻雜(Li、Ca和Yb)對MgAgSb基合金的微觀組織、輸運特性和熱電性能的影響規(guī)律,采用單能帶拋物線理論結(jié)合聲學支散射模型和Debye-Callaway模型及結(jié)構(gòu)分析查明電熱輸運機制,揭示摻雜改性機理。研究發(fā)現(xiàn),燒結(jié)溫度對MgAg_(0.97)Sb_(0.99)合金的晶粒尺寸、相組成和熱電性能有明顯影響。當燒結(jié)溫度不高于573K時,MgAg_(0.97)Sb_(0.99)合金為純相,晶粒尺寸較小(約150nm);當燒結(jié)溫度為593K時,晶粒尺寸顯著增大(1~5μm);當燒結(jié)溫度為613K時,出現(xiàn)微量第二相。隨燒結(jié)溫度升高,載流子濃度先降低后上升,功率因子先減小后增大,總熱導率單調(diào)增大,熱電優(yōu)值下降。通過優(yōu)選合金成分,即增加Sb含量,增大了MgAg_(0.97)Sb_(0.99+x)合金的載流子濃度,提高了功率因子。當x不高于0.005時,合金為純相;當x為0.01時出現(xiàn)Sb納米顆粒。Sb含量增加,載流子濃度與電導率先顯著增大后略減小,功率因子單調(diào)升高,其中室溫值由18.2μWcm-1K-2升至22.9μWcm-1K-2。同時總熱導率也增大,熱電優(yōu)值未見提高,但高功率因子有利于提高熱電器件的輸出功率密度。采用理論模型計算確定MgAg_(0.97)Sb_(0.99)合金的最高功率因子對應(yīng)的最佳載流子濃度為9.0×1019cm-3,未摻雜合金的載流子濃度僅為2.7×1019cm-3,通過Li摻雜大幅度增大Mg1-xLixAg_(0.97)Sb_(0.99)合金的載流子濃度,顯著提高功率因子。隨Li摻雜量增加,功率因子先升高后降低,當x=0.01時出現(xiàn)峰值,室溫為24.0μWcm-1K-2;同時晶格熱導率先減小后增大,最終平均熱電優(yōu)值(300~548K)略有提高,從1.0(x=0)升至1.1(x=0.01)。采用Ca或Yb摻雜增大Mg_(1-x)M_xAg_(0.97)Sb_(0.99)(M=Ca或Yb)合金的載流子濃度,降低晶格熱導率,提高熱電優(yōu)值。Ca摻雜量增加,Mg1-xCaxAg_(0.97)Sb_(0.99)合金的載流子濃度單調(diào)增大,功率因子升高;產(chǎn)生晶格畸變,降低晶格熱導率。Yb摻雜量增加,Mg1-xYbxAg_(0.97)Sb_(0.99)合金的載流子濃度先升高后基本不變,功率因子先升高后略降低;晶格熱導率先顯著降低后升高,熱電優(yōu)值在x=0.005時達最大,最高熱電優(yōu)值在548K為1.4。相比Ca摻雜,相同量Yb摻雜造成更強烈的晶格畸變,顯著降低晶格熱導率,明顯提高熱電優(yōu)值。采用高能球磨結(jié)合快速燒結(jié)方法制備出納米結(jié)構(gòu)的MgAgSb合金,通過引入高密度的空位晶界、層錯、位錯等缺陷,大幅度增強了聲子散射概率,降低了晶格熱導率。MgAg_(0.97)Sb_(0.99)合金的本征載流子濃度遠低于理論最佳值,主要通過元素摻雜增大載流子濃度,提升功率因子,同時晶格畸變降低晶格熱導率,提高熱電優(yōu)值。
[Abstract]:The MgAgSb alloy has a lower intrinsic thermal conductivity at the temperature range of 300~548K, but the carrier concentration is low, and it has not reached the optimum range. The power factor and the thermoelectric merit still have a larger lifting space. In addition, the electrothermal transport mechanism of the alloy is not yet clear, which restricts the further performance optimization. This paper mainly increases the MgAgSb bonding through the doping of elements. X ray diffractometer, transmission electron microscope, Seebeck coefficient / conductivity comprehensive testing system, flash thermo thermal conductivity meter and comprehensive physical measurement system are used to study the sintering temperature, alloy composition and Mg doping (Li, Ca and Yb) on the microstructure of MgAgSb based alloys. The influence laws of transport characteristics and thermoelectric properties are investigated by using the single energy band parabola theory, the acoustic support scattering model and the Debye-Callaway model and the structural analysis to find out the mechanism of the electric heat transport and reveal the mechanism of doping modification. It is found that the sintering temperature has a significant influence on the grain size, phase composition and thermoelectric properties of MgAg_ (0.97) Sb_ (0.99) alloy. When the sintering temperature is not higher than 573K, the MgAg_ (0.97) Sb_ (0.99) alloy is a pure phase, and the grain size is smaller (about 150nm). When the sintering temperature is 593K, the grain size increases significantly (1~5 m). When the sintering temperature is 613K, the second phase appears. With the sintering temperature rising, the carrier concentration decreases first and then rises, the power factor decreases first and then increases, the total thermal conductivity is increased. The total thermal conductivity is increased. By optimizing the alloy composition, that is, increasing the Sb content, increasing the carrier concentration of MgAg_ (0.97) Sb_ (0.99+x) alloy and increasing the power factor. When x is not higher than 0.005, the alloy is pure phase, and when x is 0.01, the Sb nanoparticles.Sb content increases, and the carrier concentration and electrical conductivity first increase significantly after a significant increase in the carrier concentration and conductivity. The power factor increases monotonously, in which the room temperature rises from 18.2 to 22.9 Wcm-1K-2 to 22.9 Mu and the total thermal conductivity increases, and the thermoelectric merit is not improved, but the high power factor is beneficial to the increase of the output power density of the thermoelectric device. The optimum carrier of the maximum power factor of MgAg_ (0.97) Sb_ (0.99) alloy is determined by theoretical model calculation. The concentration is 9 x 1019cm-3, the carrier concentration of the undoped alloy is only 2.7 x 1019cm-3. The carrier concentration of Mg1-xLixAg_ (0.97) Sb_ (0.99) alloy is greatly increased by Li doping, and the power factor is significantly increased. With the increase of Li doping, the power factor rises first and then decreases, when the X =0.01 is at the peak value and the room temperature is 24 um Wcm-1K-2; and the lattice heat is at the same time. The ultimate average thermoelectric value (300~548K) increases slightly from 1 (x=0) to 1.1 (x=0.01). The carrier concentration of Mg_ (1-x) M_xAg_ (0.97) Sb_ (0.99) (M=Ca or Yb) alloy is increased by Ca or Yb doping, the thermal conductivity of the lattice is reduced, the doping amount of the thermoelectric value increases, and the carrier concentration of the alloy (0.97) (0.99) is increased. With the increase of degree monotonicity and the increase of power factor, lattice distortion and lattice thermal conductivity.Yb doping increase, the carrier concentration of Mg1-xYbxAg_ (0.97) Sb_ (0.99) alloy increases first, and the power factor rises first and then decreases slightly; the thermal conductivity of lattice is the first to decrease, and the thermoelectric value reaches the maximum at x=0.005, and the highest thermoelectric merit is at the highest value. 548K doping with the same amount of Yb leads to more intense lattice distortion of the same amount of Yb, which significantly reduces the thermal conductivity of the lattice and obviously improves the thermoelectric value. The nano structure MgAgSb alloy is prepared by high energy ball milling and rapid sintering. By introducing high density vacancy grain boundary, stacking error, dislocation and other defects, the phonon scattering is greatly enhanced. The intrinsic carrier concentration of.MgAg_ (0.97) Sb_ (0.99) alloy is much lower than that of the theoretical optimum. The carrier concentration increases mainly through the doping of the element, and the power factor is increased. The lattice distortion reduces the thermal conductivity of the lattice and improves the thermoelectric value.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TG146.22

【相似文獻】

相關(guān)期刊論文 前10條

1 謝宇;蔣豐興;徐景坤;;聚(3,4-二氧乙撐噻吩)的制備及其熱電性能研究[J];功能材料;2009年12期

2 Е.М.Савицкий;張建華;;鎢單晶的熱電性能[J];儀表材料;1974年04期

3 趙媛;唐光詩;;氧化石墨增強高分子材料熱電性能的初步研究[J];北京化工大學學報(自然科學版);2012年03期

4 張琨;張睿智;;層狀硫化物中晶格失配對熱電性能影響的理論研究[J];石家莊學院學報;2013年06期

5 井群;司海剛;張世華;王淵旭;;室溫下硅與硅鍺合金的熱電性能研究[J];河南大學學報(自然科學版);2010年05期

6 楊梅君;沈強;唐新峰;張聯(lián)盟;;鉍摻雜硅化鎂材料的制備及熱電性能[J];硅酸鹽學報;2011年10期

7 邢學玲;劉小滿;許德華;閔新民;;Ca_3Co_2O_6與摻銅體系的量子化學計算[J];材料導報;2008年09期

8 相楠;寇超超;趙苗;譚宏斌;;摻鈉對鈷酸鈣熱電性能影響研究[J];陶瓷;2010年09期

9 陳燕彬;羅小光;何濟洲;;不同模數(shù)對材料熱電性能的影響[J];量子電子學報;2014年02期

10 黃才光;;P型和N型硅鍺合金的制備及熱電性能[J];鑄造技術(shù);2014年01期

相關(guān)會議論文 前10條

1 張婷;蔣俊;陳建敏;張秋實;李煒;許高杰;;P型BiSbTe/Zn_4Sb_3復合材料的熱電性能[A];2011中國材料研討會論文摘要集[C];2011年

2 徐桂英;;具有量子效應(yīng)的多空硅片的熱電性能[A];2004年中國材料研討會論文摘要集[C];2004年

3 曹一琦;朱鐵軍;趙新兵;;放電等離子燒結(jié)制備的Bi_2Te_3/Sb_2Te_3復合材料的熱電性能[A];第六屆中國功能材料及其應(yīng)用學術(shù)會議論文集(4)[C];2007年

4 閔新民;張文芹;葉春勇;;失配層鈷酸鹽與摻鑭系列的電子結(jié)構(gòu)與熱電性能[A];中國化學會2005年中西部十五省(區(qū))、市無機化學化工學術(shù)交流會論文集[C];2005年

5 閔新民;王緒超;;失配層鈷酸鹽與摻雜系列的量子化學計算研究[A];中國化學會第29屆學術(shù)年會摘要集——第15分會:理論化學方法和應(yīng)用[C];2014年

6 肖忠良;曹忠;吳道新;李宇春;尹周瀾;陳啟元;;Zn_4Sb_3的熱電性能的理論計算[A];2006年全國冶金物理化學學術(shù)會議論文集[C];2006年

7 李奕l,

本文編號:2104445


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2104445.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8aac9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
麻豆一区二区三区精品视频| 午夜日韩在线观看视频| 中文字幕亚洲精品人妻| 人妻内射精品一区二区| 麻豆亚州无矿码专区视频| 日韩三级黄色大片免费观看| 国产亚洲不卡一区二区| 国产一级内射麻豆91| 国内精品偷拍视频久久| 91欧美一区二区三区| 久久99热成人网不卡| 日本少妇中文字幕不卡视频| 激情五月天免费在线观看| 麻豆剧果冻传媒一二三区| 国产在线小视频你懂的| 狠狠亚洲丁香综合久久| 国内精品偷拍视频久久| 亚洲国产天堂av成人在线播放 | 少妇在线一区二区三区| 东北老熟妇全程露脸被内射| 99久久国产精品免费| 久久这里只精品免费福利| 国产水滴盗摄一区二区| 黄片在线免费观看全集| 亚洲最新中文字幕一区| 国产三级不卡在线观看视频| 又色又爽又黄的三级视频| 中文字幕欧美视频二区| 亚洲欧美日产综合在线网| 欧美人妻一区二区三区| 精品少妇人妻av一区二区蜜桃 | 午夜午夜精品一区二区| 欧美日韩综合在线精品| 日韩欧美中文字幕人妻| 黄色在线免费高清观看| 东京热男人的天堂一二三区| 国产熟女高清一区二区| 欧美av人人妻av人人爽蜜桃| 亚洲成人免费天堂诱惑| 亚洲精品国产精品日韩| 免费在线播放不卡视频|