陽(yáng)極氧化法構(gòu)建自清潔功能的鋁基超疏水表面及其性能研究
本文選題:超疏水表面 + 鋁 ; 參考:《南京航空航天大學(xué)》2016年博士論文
【摘要】:鋁及其合金在自然界中儲(chǔ)量豐富,且因具有良好的延展性、高比強(qiáng)度和優(yōu)異的導(dǎo)電性能等眾多優(yōu)勢(shì),成為了現(xiàn)代工業(yè)中的一種重要的工程材料,并被廣泛應(yīng)用在航空航天業(yè)、海運(yùn)業(yè)和民用工業(yè)等眾多領(lǐng)域。然而,當(dāng)鋁及其合金暴露在惡劣的環(huán)境條件下,尤其是海洋或者潮濕的環(huán)境中,會(huì)容易受到腐蝕和污染,而當(dāng)長(zhǎng)時(shí)間處于戶外環(huán)境中則會(huì)遭到損壞,且在極寒的條件下會(huì)發(fā)生積冰現(xiàn)象。這些問(wèn)題不僅嚴(yán)重影響了它們的美觀性和功能,甚至還會(huì)引起巨大的經(jīng)濟(jì)損失和災(zāi)難性事故的發(fā)生。為了防止這些問(wèn)題的發(fā)生,可以將親水的鋁及鋁合金表面進(jìn)行超疏水化處理,通過(guò)形成一層集防腐、防污和防結(jié)冰功能為一體的表面保護(hù)層,來(lái)實(shí)現(xiàn)理想的防護(hù)效果。本研究采用陽(yáng)極氧化和十四酸以及1H,1H,2H,2H-全氟癸基三乙氧基硅烷(FAS)表面修飾相結(jié)合的這種簡(jiǎn)單有效的方法,成功地制備出了具有分級(jí)微-納米結(jié)構(gòu)的自清潔功能的鋁基超疏水表面。通過(guò)原子力學(xué)顯微鏡(AFM)、場(chǎng)發(fā)射掃描電鏡(FESEM)和X射線能量色散光譜(EDS)對(duì)表面形貌和化學(xué)組成進(jìn)行了表征。并從表面潤(rùn)濕性、機(jī)械和化學(xué)穩(wěn)定性、耐候性、耐蝕性、防結(jié)冰性以及自清潔性這幾個(gè)方面對(duì)所制備的鋁基超疏水表面進(jìn)行了系統(tǒng)地研究。主要內(nèi)容如下:(1)先用16 V電壓對(duì)鋁合金進(jìn)行陽(yáng)極氧化,接著用熔融的十四酸進(jìn)行修飾,獲得了接觸角和滾動(dòng)角分別為155.6±1.0°和5.7±0.2°的超疏水鋁合金表面。對(duì)鋁基底來(lái)說(shuō),所制備的最佳超疏水鋁表面為陽(yáng)極氧化電壓為20 V時(shí)經(jīng)FAS修飾的表面,此時(shí)表面的接觸角高達(dá)156.0±0.7°,滾動(dòng)角低至2.5±1.4°。通過(guò)FESEM圖片發(fā)現(xiàn),在鋁基超疏水表面上構(gòu)建出了三種分級(jí)的微-納米結(jié)構(gòu),即微-納米線結(jié)構(gòu)、微-納米孔結(jié)構(gòu)和微-納米線金字塔結(jié)構(gòu),并詳細(xì)探討了陽(yáng)極氧化鋁納米孔結(jié)構(gòu)演變?yōu)殛?yáng)極氧化鋁納米線結(jié)構(gòu)的形成機(jī)制。同時(shí),利用接觸角測(cè)量?jī)x對(duì)水滴在鋁基超疏水表面的靜態(tài)和動(dòng)態(tài)行為進(jìn)行了研究,并基于經(jīng)典的Cassie-Baxter方程對(duì)其潤(rùn)濕性能進(jìn)行了理論分析。相應(yīng)的結(jié)果表明:當(dāng)水滴分別與十四酸修飾的超疏水鋁合金表面和FAS修飾的超疏水鋁表面接觸時(shí),對(duì)應(yīng)的水滴與空氣接觸面所占的單位表觀面積分?jǐn)?shù)分別為87.5%和82.2%。(2)超疏水鋁合金表面在室溫下放置9個(gè)月或分別浸泡在去離子水、80°C去離子水以及無(wú)水乙醇中36 h后,仍然具有超疏水性,表明此表面在空氣中具有良好的長(zhǎng)效穩(wěn)定性和高效的化學(xué)穩(wěn)定性。此外,最佳超疏水鋁表面在抗砂粒磨損和一系列溶液中分別表現(xiàn)出良好的機(jī)械穩(wěn)定性和化學(xué)穩(wěn)定性:經(jīng)過(guò)90 s噴砂處理后,表面的接觸角仍高達(dá)151.8±1.1°;經(jīng)過(guò)在常用試劑和80°C去離子水中放置7天的浸泡測(cè)試以及不同酸堿溶液在其表面靜置的潤(rùn)濕性測(cè)試后發(fā)現(xiàn),該表面依然具有穩(wěn)定的超疏水性;另外,通過(guò)7天連續(xù)的紫外/噴水冷凝循環(huán)測(cè)試后,其表面也依然保持超疏水效果,表明該超疏水鋁表面具有優(yōu)異的耐候性。(3)電化學(xué)測(cè)試結(jié)果表明:超疏水鋁合金表面的腐蝕電流密度較鋁合金基底降低了近4個(gè)數(shù)量級(jí),腐蝕電位從-0.838 V正移到了0.403 V,表現(xiàn)出優(yōu)異的耐腐蝕性能。最佳超疏水鋁表面的腐蝕電流密度較鋁基底也降低了約4個(gè)數(shù)量級(jí),相應(yīng)的腐蝕電位有了0.93 V的正移,且對(duì)鋁基底的防護(hù)效率高達(dá)99.99%。(4)與鋁基底相比,超疏水鋁表面可以延緩結(jié)冰時(shí)間并降低結(jié)冰溫度。水滴在鋁表面上的結(jié)冰溫度和結(jié)冰持續(xù)時(shí)間分別為-12.3°C和2 s;而對(duì)于最佳超疏水鋁表面,其相應(yīng)的值分別為-24.0°C和23 s。將四種具有不同潤(rùn)濕程度的表面(超親水的陽(yáng)極氧化鋁AAO、親水的鋁、十四酸和FAS修飾的疏水鋁以及超疏水鋁表面)的冰粘附強(qiáng)度進(jìn)行對(duì)比研究,發(fā)現(xiàn)最佳超疏水鋁表面的冰粘附力下降最為明顯,其值低至0.036±0.022 MPa,僅為鋁表面冰粘附力值(1.024±0.283 MPa)的3.5%。較低的結(jié)冰溫度和極低的冰粘附強(qiáng)度表明,所制備的超疏水鋁表面具有優(yōu)異的抗結(jié)冰性能,其抗結(jié)冰效果要優(yōu)于疏水鋁表面,且遠(yuǎn)遠(yuǎn)優(yōu)于鋁和陽(yáng)極氧化鋁表面。(5)將碳粉模擬成污染物,當(dāng)水滴從鋁基超疏水表面滾落時(shí),其表面的污染物很容易隨著水滴的滾落而被一并帶走。與鋁、陽(yáng)極氧化鋁和疏水鋁表面相比,最佳超疏水鋁表面具有最低的污染物累積率,僅為0.18%,表現(xiàn)出高效的自清潔效率。而且,經(jīng)過(guò)噴砂處理、耐候性測(cè)試、電化學(xué)耐腐蝕測(cè)試和多次結(jié)冰/去冰循環(huán)測(cè)試后,其表面依然能保持著良好的自清潔功能。
[Abstract]:Aluminum and its alloys are abundant in nature and have many advantages, such as good ductility, high specific strength and excellent electrical conductivity. It has become an important engineering material in modern industry, and is widely used in many fields, such as aerospace industry, shipping industry and civil industry. However, when aluminum and its alloys are exposed to bad conditions, Under the environment, especially in the ocean or moist environment, it will be vulnerable to corrosion and pollution, and it will be damaged in the outdoor environment for a long time, and ice accumulation will occur in extremely cold conditions. These problems not only seriously affect their beauty and function, but also cause huge economic losses and disasters. In order to prevent the occurrence of these problems, the hydrophilic aluminum and aluminum alloy surface can be superhydrophobically treated by the formation of an anticorrosion, antifouling and anti icing function to achieve the ideal protective effect. This study uses anodic oxidation and fourteen acid and 1H, 1H, 2H, 2H- perfluorodeci. An aluminum based superhydrophobic surface with a self cleaning function with a graded micro nano structure was successfully prepared by combining the surface modification of FAS. The surface morphology and chemical composition of the surface morphology and chemical composition were obtained by atomic mechanical microscopy (AFM), field emission scanning electron microscopy (FESEM) and X line energy dispersive spectroscopy (EDS). The surface wettability, mechanical and chemical stability, weatherability, corrosion resistance, ice resistance, and self cleaning are systematically studied. The main contents are as follows: (1) the aluminum alloy was anodized first with 16 V voltage, and then modified with molten fourteen acid. The surface of super hydrophobic aluminum alloy with contact angle and rolling angle of 155.6 + 1 degrees and 5.7 + 0.2 degrees respectively. For aluminum substrate, the best superhydrophobic aluminum surface is FAS modified surface when the anode oxidation voltage is 20 V. The contact angle of the surface is up to 156 + 0.7 degrees, and the rolling angle is low to 2.5 + 1.4 degrees. The aluminum base is found in the aluminum base. Three kinds of micro nanostructures were constructed on the superhydrophobic surface, namely micro nanowire structure, micro nano pore structure and micro nanowire Pyramid structure. The formation mechanism of anodic alumina nanopore structure evolved into anodic alumina nanowire structure was discussed in detail. At the same time, the water droplet was superhydrophobic by the contact angle measuring instrument. The static and dynamic behavior of the surface is studied and the wettability of the surface is theoretically analyzed based on the classical Cassie-Baxter equation. The corresponding results show that when the water droplets are exposed to the surface of the superhydrophobic aluminum alloy modified by the fourteen acid and the FAS modified superhydrophobic aluminum surface, the corresponding surface of the contact surface of the water droplets and the air is the unit table. The apparent area fraction of 87.5% and 82.2%. (2) superhydrophobic aluminum alloy surface at room temperature for 9 months or respectively soaked in deionized water, 80 dedeionized water and 36 h in anhydrous ethanol, still have super hydrophobicity, indicating that the surface has good long-term stability and high chemical stability in the air. In addition, the best superhydrophobicity of the surface in the air. The aluminum surface showed good mechanical stability and chemical stability in the abrasive wear resistance and a series of solutions. After 90 s sandblasting, the contact angle of the surface was still up to 151.8 + 1.1 degrees, and the soaking test for 7 days in the deionized water of common reagents and 80 degrees C and the wettability of different acid and alkali solutions on its surface were measured. After testing, it is found that the surface still has a stable superhydrophobicity, and the surface of the super hydrophobic aluminum has excellent weatherability after 7 days of continuous ultraviolet / water spray condensation test, indicating that the surface of the superhydrophobic aluminum has excellent weatherability. (3) the electrochemical test results show that the corrosion current density of the surface of the superhydrophobic aluminum alloy is more than that of the aluminum alloy. The substrate decreased nearly 4 orders of magnitude, and the corrosion potential shifted from -0.838 V to 0.403 V, showing excellent corrosion resistance. The optimum corrosion current density of the best superhydrophobic aluminum surface was about 4 orders of magnitude lower than that of aluminum substrate. The corresponding corrosion potential had a positive shift of 0.93 V, and the protection efficiency of aluminum substrate was as high as 99.99%. (4) and aluminum substrate phase. The surface of the superhydrophobic aluminum can delay the freezing time and reduce the freezing temperature. The freezing temperature and freezing duration of the water droplets on the aluminum surface are -12.3 C and 2 s, respectively, and for the best superhydrophobic aluminum surface, the corresponding values are four kinds of surface (super hydrophilic anodic alumina AAO with different wetting degrees), respectively, -24.0 [C and 23 S., respectively. The ice adhesion strength of the hydrophilic aluminum, fourteen acid and FAS modified aluminum and the superhydrophobic aluminum surface was compared. It was found that the best ice adhesion of the best superhydrophobic aluminum surface decreased to 0.036 + 0.022 MPa, only the low ice freezing temperature and the very low ice adhesion to the 3.5%. of the aluminum surface ice adhesion force (1.024 + 0.283 MPa). The strength shows that the superhydrophobic aluminum surface has excellent anti icing properties, and its anti icing effect is superior to the hydrophobic aluminum surface, and is far superior to the aluminum and anodic aluminum oxide surface. (5) the carbon powder is simulated as a pollutant. When the water drops from the aluminum base superhydrophobic surface, the surface of the surface of the pollutants is very easy to be accompanied by the drop of water droplets. Compared with aluminum, anodic alumina and hydrophobic aluminum surface, the best superhydrophobic aluminum surface has the lowest accumulation rate of pollutants, only 0.18%, showing high efficient self cleaning efficiency. Moreover, the surface of the surface remains good after the sandblasting treatment, weatherability test, electrochemical corrosion resistance test and multiple ice / ice cycling test. Self cleaning function.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG174.451
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周勤;王友亮;;超疏水表面制備的研究進(jìn)展[J];廣東化工;2008年10期
2 魏增江;田冬;肖成龍;劉偉良;;超疏水表面:從制備方法到功能應(yīng)用[J];化工進(jìn)展;2009年11期
3 潘光;黃橋高;胡海豹;劉占一;;超疏水表面的潤(rùn)濕性及其應(yīng)用研究[J];材料導(dǎo)報(bào);2009年21期
4 牟丹;周奕含;;疏水高分子單鏈在疏水表面上吸附和擴(kuò)散過(guò)程的分子動(dòng)力學(xué)模擬[J];物理化學(xué)學(xué)報(bào);2011年02期
5 ;超疏水表面制備技術(shù)取得進(jìn)展[J];化工中間體;2011年04期
6 郭樹虎;于志家;羅明寶;孫曉哲;;超疏水表面潤(rùn)濕理論研究進(jìn)展[J];材料導(dǎo)報(bào);2012年05期
7 秦亮;劉天慶;;親/疏水表面上液滴滯后阻力的研究[J];化工進(jìn)展;2012年08期
8 劉金秋;柏沖;徐文華;張獻(xiàn);劉迎凱;姚金水;劉偉良;;高黏附性超疏水表面的研究進(jìn)展[J];應(yīng)用化學(xué);2013年07期
9 蔣雄;喬生儒;張程煜;胡海豹;劉曉菊;;疏水表面及其減阻研究[J];化學(xué)進(jìn)展;2008年04期
10 林飛云;馮杰;黃明達(dá);鐘明強(qiáng);;基于不銹鋼模板熱壓微模塑構(gòu)建聚乙烯超疏水表面[J];功能高分子學(xué)報(bào);2010年02期
相關(guān)會(huì)議論文 前10條
1 高環(huán);耿信鵬;王保懷;白泉;;變性牛血清蛋白在適度疏水表面上構(gòu)象變化的鹽濃度依賴性研究[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
2 柴瑜;耿信鵬;彭晶晶;鄭長(zhǎng)征;;鹽濃度對(duì)天然核糖核酸酶在疏水表面上吸附穩(wěn)定性及構(gòu)象影響的研究[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
3 耿信鵬;鄭美榮;王保懷;耿信篤;劉愛(ài)玲;;天然溶菌酶在疏水表面置換吸附焓的鹽濃度影響研究[A];中國(guó)化學(xué)會(huì)第十三屆全國(guó)化學(xué)熱力學(xué)和熱分析學(xué)術(shù)會(huì)議論文摘要集[C];2006年
4 王倩;楊振忠;;利用海膽狀復(fù)合微球制備超疏水表面[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
5 陳勝;崔樹勛;;超疏水表面自清潔機(jī)理研究[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第2分會(huì):溶液中的聚集與分子組裝[C];2013年
6 馮小艷;耿信鵬;周燁;侯海云;;鹽濃度對(duì)變性α-淀粉酶在疏水表面上吸附及構(gòu)象的影響[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
7 宋付權(quán);武玉海;俞巨高;;疏水-超疏水表面的簡(jiǎn)易制備方法[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
8 姜程;王齊華;;超疏水表面的研究及制備[A];甘肅省化學(xué)會(huì)二十六屆年會(huì)暨第八屆中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2009年
9 胡海豹;陳立斌;黃蘇和;鮑路遙;;水滴撞擊超疏水表面的彈跳行為研究[A];第十二屆全國(guó)物理力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
10 王媛怡;王慶軍;陳慶民;;不同化學(xué)修飾超疏水表面疏冰功能的驗(yàn)證[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題F:功能高分子[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 李大慶;新面料何以冬暖夏涼[N];科技日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前6條
1 孔令豪;磷銅超疏水表面的質(zhì)制備及其性能研究[D];河南大學(xué);2016年
2 鄭順麗;陽(yáng)極氧化法構(gòu)建自清潔功能的鋁基超疏水表面及其性能研究[D];南京航空航天大學(xué);2016年
3 沈一洲;Ti6Al4V超疏水表面的構(gòu)建及其防/除冰機(jī)理研究[D];南京航空航天大學(xué);2016年
4 錢柏太;金屬基體上超疏水表面的制備研究[D];大連理工大學(xué);2006年
5 楊昊煒;聚硅氧烷超疏水表面制備及其性能研究[D];復(fù)旦大學(xué);2011年
6 李晶;多元耦合仿生疏水金屬表面制備原理與方法研究[D];吉林大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 時(shí)銀龍;溶膠—凝膠法和水熱合成法制備超疏水表面及其結(jié)構(gòu)優(yōu)化[D];華南理工大學(xué);2015年
2 楊娜;超疏水表面在鎂合金上制備及其抗腐蝕研究[D];西南大學(xué);2015年
3 侯金林;反應(yīng)性聚硅氧烷納米顆粒的制備及超疏水表面的構(gòu)筑[D];陜西科技大學(xué);2015年
4 王夢(mèng)蕾;微—納米二元結(jié)構(gòu)超疏水表面抑冰性能研究[D];湖南工業(yè)大學(xué);2015年
5 李偉;鎂合金基體上超疏水表面的制備及功能特性研究[D];華南理工大學(xué);2015年
6 時(shí)慶文;鋁合金基體超疏水表面抗冰特性研究[D];南昌航空大學(xué);2014年
7 劉英雨;不銹鋼基超疏水表面制備技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
8 童文建;鈦基體超疏水表面的刻蝕法制備及其性能研究[D];湘潭大學(xué);2015年
9 呂大梅;鋁基超疏水表面的制備與腐蝕防護(hù)性研究[D];南昌航空大學(xué);2015年
10 趙麗斌;銅基超疏水表面的制備及性能研究[D];蘭州交通大學(xué);2015年
,本文編號(hào):2103298
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2103298.html