高強(qiáng)鋼表面水性無機(jī)磷酸鹽防護(hù)涂料的制備與性能研究
本文選題:高強(qiáng)鋼 + 無機(jī)磷酸鹽涂料; 參考:《南京航空航天大學(xué)》2016年碩士論文
【摘要】:針對(duì)高強(qiáng)鋼耐腐蝕性較差的問題,本文研究了一種水性無機(jī)磷酸鹽表面防護(hù)涂料底漆與面漆,并采用空氣噴涂的方式分別將底漆與面漆涂料涂敷到高強(qiáng)鋼基體表面,制備出一種耐腐蝕、抗高溫氧化的含鋁磷酸鹽防腐涂層。采用正交試驗(yàn)法優(yōu)化底漆面漆涂料配方,并對(duì)涂層的表觀形貌,涂層的厚度、硬度、附著力、耐磨性能等綜合性能進(jìn)行測(cè)試,采用中性鹽霧試驗(yàn)、模擬海水全浸泡試驗(yàn)、電化學(xué)測(cè)試對(duì)涂層在常溫環(huán)境中的耐腐蝕性能進(jìn)行分析,采用600℃高溫氧化試驗(yàn)對(duì)涂層在高溫環(huán)境中的抗高溫氧化性能進(jìn)行分析與研究。研究結(jié)果表明:采用正交試驗(yàn)法優(yōu)化的底漆涂料最佳配方為蒸餾水:磷酸二氫鋁:氧化鋅:氧化鎂:鉻酸鎂:鋁粉=30:15:0.4:0.4:3.0:36;面漆涂料最佳配方為蒸餾水:磷酸二氫鋁:氧化鋅:氧化鎂:鉻酸鎂:鋁粉:正硅酸四乙酯=15:15:0.4:0.4:2.4:4.5:0.6。涂料的固化工藝為120℃固化2h后升溫至220℃固化17h。制備出的底漆面漆共同涂覆涂層厚度為117.4μm,涂層附著力為10.66MPa,涂層硬度為3H。防腐性能測(cè)試結(jié)果表明:中性鹽霧試驗(yàn)1000h后涂層保持穩(wěn)定,表面無腐蝕產(chǎn)物形成;模擬海水全浸泡試驗(yàn)21d后,涂層表面未發(fā)生明顯腐蝕,局部出現(xiàn)銹點(diǎn);電化學(xué)測(cè)試中,涂層的自腐蝕電位明顯高于基體,涂層的容抗弧幅值大于基體。涂層具有優(yōu)異的耐腐蝕性能,在常溫腐蝕環(huán)境中能夠?qū)Ω邚?qiáng)鋼基體形成有效防護(hù)。600℃抗高溫氧化試驗(yàn)結(jié)果表明在高溫氧化試驗(yàn)100h后涂層的氧化增重遠(yuǎn)小于高強(qiáng)鋼基體,在試驗(yàn)過程中涂層的氧化速度始終低于基體,抗高溫氧化等級(jí)為完全抗氧化性,具有優(yōu)異的抗高溫氧化性能。
[Abstract]:In order to solve the problem of poor corrosion resistance of high strength steel, a kind of water-based inorganic phosphate surface coating primer and topcoat was studied, and the primer and topcoat coating were applied to the surface of high strength steel respectively by air spraying, and a corrosion resistant and high temperature oxygen resistant phosphate anticorrosion coating was prepared. The orthogonal test was used. The formulation of the paint coating was optimized. The apparent morphology of the coating, the thickness of the coating, the hardness, the adhesion and the wear resistance of the coating were tested. The neutral salt spray test was used to simulate the full immersion test of the seawater. The corrosion resistance of the coating in the ambient temperature environment was analyzed by electrochemical test. The coating was applied to 600 C high temperature oxidation test. The performance of high temperature oxidation resistance in high temperature environment is analyzed and studied. The results show that the best formula for the primer coating optimized by orthogonal test is distilled water: two hydrogen phosphate: Zinc Oxide: Magnesium Oxide: magnesium chromate: aluminum =30:15:0.4:0.4:3.0:36; the best formula for the surface paint is distilled water: two aluminum phosphate: Zinc Oxide: Zinc Oxide: Magnesium Oxide Magnesium chromate: aluminum powder: the curing process of four ethyl orthosilicate =15:15:0.4:0.4:2.4:4.5:0.6. coating is 120 C for 2h solidified after curing to 220 C, the coating thickness of the base paint coating is 117.4 mu m, the coating adhesion is 10.66MPa, the coating hardness is 3H. anticorrosive ability test results show that the neutral salt fog test 1000h post coating In the simulated seawater immersion test for 21d, the coating surface has no obvious corrosion and local rust points. In electrochemical testing, the self corrosion potential of the coating is obviously higher than that of the matrix, and the amplitude of the coating's tolerance arc is greater than that of the matrix. The coating has excellent corrosion resistance and can be used in the ambient temperature corrosion environment. The results of high temperature oxidation test at.600 C show that the oxidation weight increase of the coating is much lower than that of the high strength steel matrix after the high temperature oxidation test 100h. The oxidation rate of the coating is always lower than that of the matrix in the test process. The oxidation resistance of the coating is completely anti oxidation, and it has excellent high temperature oxidation resistance.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG174.4;TQ630.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅永峰;王熹宇;強(qiáng)旭紅;劉曉;;高強(qiáng)鋼在工程結(jié)構(gòu)中的應(yīng)用進(jìn)展[J];天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版);2015年S1期
2 李一民;魏子海;張楷;李明;陳萍;;電站風(fēng)機(jī)耐硫酸腐蝕材料的全浸試驗(yàn)研究[J];風(fēng)機(jī)技術(shù);2015年02期
3 王萌;董選普;楊帆;鄭徐雨;;溶膠-凝膠法制備鋁合金陶瓷涂層[J];特種鑄造及有色合金;2015年04期
4 張曉東;王俊;揭敢新;江魯;王受和;趙鉞;李嬋;;汽車整車在海南濕熱環(huán)境下的大氣暴露試驗(yàn)研究[J];汽車工藝與材料;2014年11期
5 李良鋒;呂福特;馬雪;王恩澤;;固化劑對(duì)磷酸鹽粘結(jié)劑固化行為的影響研究[J];人工晶體學(xué)報(bào);2014年05期
6 高玉魁;趙振業(yè);;齒輪的表面完整性與抗疲勞制造技術(shù)的發(fā)展趨勢(shì)[J];金屬熱處理;2014年04期
7 劉宏;胡彩玲;劉碧雄;;鋁型材粉末涂料靜電噴涂固化工藝過程的分析[J];涂料工業(yè);2014年03期
8 賀君良;李金許;朱潔;喬利杰;;Fe_(85)Ga_(15)多晶在模擬海水中的應(yīng)力腐蝕行為研究[J];功能材料;2013年14期
9 史艷華;梁平;王玉安;武占文;;Q235和Q345鋼在模擬海水中的腐蝕行為[J];遼寧石油化工大學(xué)學(xué)報(bào);2013年01期
10 于美;董宇;王瑞陽;祁晉豫;劉建華;李松梅;;23Co14Ni12Cr3Mo超高強(qiáng)鋼在模擬海水環(huán)境中的腐蝕行為[J];材料工程;2012年01期
,本文編號(hào):2079501
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2079501.html