車銑復(fù)合加工中心床身動(dòng)態(tài)特性分析和優(yōu)化設(shè)計(jì)
本文選題:CK6140車銑復(fù)合加工中心 + 床身 ; 參考:《濟(jì)南大學(xué)》2017年碩士論文
【摘要】:高效切削加工技術(shù)的發(fā)展使得切削速度不斷提高,對(duì)加工中心的復(fù)合功能也提出了新要求,評(píng)價(jià)加工中心優(yōu)劣的指標(biāo)不在局限于機(jī)床的靜態(tài)特性,而是重點(diǎn)評(píng)價(jià)能夠決定加工精度、工件表面質(zhì)量、生產(chǎn)效率以及刀具使用壽命的機(jī)床動(dòng)態(tài)特性,對(duì)切削加工系統(tǒng)的動(dòng)態(tài)特性研究已經(jīng)成為高檔數(shù)控機(jī)床研發(fā)制造的關(guān)鍵共性技術(shù)問(wèn)題。本文對(duì)CK6140車銑復(fù)合加工中心的床身進(jìn)行了模態(tài)分析。利用Workbench有限元仿真軟件對(duì)床身進(jìn)行模態(tài)仿真,數(shù)值計(jì)算求解床身結(jié)構(gòu)的前三十階固有頻率,得到十三階模態(tài)的數(shù)值模態(tài)參數(shù);采用單輸入多輸出的SIMO錘擊法進(jìn)行了數(shù)據(jù)采集工作,運(yùn)用Matlab編制的最小二乘復(fù)指數(shù)法程序?qū)诓杉瘮?shù)據(jù)的頻響函數(shù)進(jìn)行擬合和模態(tài)參數(shù)識(shí)別,得到了床身結(jié)構(gòu)前十三階的試驗(yàn)?zāi)B(tài)參數(shù);通過(guò)試驗(yàn)結(jié)果與仿真數(shù)值計(jì)算結(jié)果對(duì)比驗(yàn)證了仿真數(shù)值計(jì)算的正確性。對(duì)CK6140車銑復(fù)合加工中心的床身進(jìn)行了動(dòng)態(tài)特性分析。分析了銑削加工時(shí)的切削力,利用Workbench有限元仿真軟件對(duì)床身變形、床身諧響應(yīng)進(jìn)行了分析,發(fā)現(xiàn)第一階模態(tài)到第三階模態(tài)的固有頻率與諧響應(yīng)分析的共振峰頻率基本重合,說(shuō)明了床身結(jié)構(gòu)對(duì)于低階模態(tài),尤其是第一階模態(tài)非常敏感,假如工作頻率接近低階模態(tài)頻率,就會(huì)產(chǎn)生劇烈的共振現(xiàn)象。對(duì)CK6140車銑復(fù)合加工中心的床身結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì)。利用吉村允孝積分法建立了阻尼塊與床身型腔間機(jī)械結(jié)合面的等效動(dòng)力學(xué)模型,以阻尼塊的屬性、數(shù)量為設(shè)計(jì)變量,以降低實(shí)際工況下床身的最大動(dòng)力響應(yīng)幅值及改善低階模態(tài)固有頻率為優(yōu)化目標(biāo),確定合理的優(yōu)化參數(shù),提出基于附加阻尼方法的床身動(dòng)態(tài)優(yōu)化方案。通過(guò)分析方案,床身的動(dòng)態(tài)特性得到了顯著的改善。
[Abstract]:With the development of high efficiency machining technology, the cutting speed is increasing, and the new requirements for the complex function of machining center are put forward. The evaluation index of machining center is not limited to the static characteristic of machine tool. It focuses on evaluating the dynamic characteristics of machine tools that can determine machining accuracy, workpiece surface quality, production efficiency and tool life. The research on the dynamic characteristics of cutting system has become a key common technical problem in the research and manufacture of high grade NC machine tools. Modal analysis of the bed of CK6140 turn-milling complex machining center is carried out in this paper. The first 30 natural frequencies of the bed structure are numerically calculated and the numerical modal parameters of the thirteenth mode are obtained by using the Workbench finite element simulation software. The single input multiple output Simo hammering method is used to collect data. The frequency response function based on the collected data is fitted and modal parameters are identified by using the program of least square complex exponent developed by Matlab. The experimental modal parameters of the first thirteenth order of the bed structure are obtained, and the correctness of the simulation numerical calculation is verified by comparing the experimental results with the simulation results. The dynamic characteristics of the bed of CK6140 turn-milling complex machining center are analyzed. The cutting force during milling is analyzed, and the deformation and harmonic response of the bed are analyzed by using the Workbench finite element simulation software. It is found that the natural frequencies from the first to the third modes basically coincide with the resonance peak frequencies of the harmonic response analysis. It is shown that the bed structure is very sensitive to the low-order modes, especially the first-order modes. If the operating frequency is close to the low-order modal frequency, there will be a violent resonance phenomenon. The bed structure of CK6140 turn-milling complex machining center was optimized. An equivalent dynamic model of the mechanical interface between the damping block and the bed cavity is established by using the Yoshimura Yunxiao integration method. The attribute and quantity of the damping block are taken as the design variables. In order to reduce the maximum dynamic response amplitude of the bed under actual working conditions and improve the natural frequency of the low-order mode as the optimization objective, the reasonable optimization parameters are determined, and the dynamic optimization scheme based on the additional damping method is proposed. By analyzing the scheme, the dynamic characteristics of the bed are greatly improved.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG65
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉耀;黃玉美;;樹(shù)脂礦物床身模態(tài)參數(shù)辨識(shí)[J];西安理工大學(xué)學(xué)報(bào);2013年02期
2 黃德東;吳斌;何隕;;從自由模態(tài)試驗(yàn)提取約束結(jié)構(gòu)模態(tài)參數(shù)的方法研究[J];科學(xué)技術(shù)與工程;2011年35期
3 何俊;賴玉活;唐清春;房學(xué)明;沈玲玲;;基于ANSYS Workbench12的床身模態(tài)分析[J];中國(guó)新技術(shù)新產(chǎn)品;2011年14期
4 李小彭;趙志杰;聶慧凡;聞邦椿;;某型數(shù)控車床床身的模態(tài)分析與結(jié)構(gòu)優(yōu)化[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年07期
5 屈濤;尹志宏;楊峰;;樹(shù)脂混凝土床身的動(dòng)靜態(tài)特性分析[J];現(xiàn)代機(jī)械;2010年01期
6 田學(xué)良;宋方臻;宋波;劉慧;;立式數(shù)控銑床的試驗(yàn)?zāi)B(tài)分析[J];機(jī)床與液壓;2009年12期
7 高巖;鄭忠才;劉波;張坤金;陳海鷗;;基于有限元的S385型柴油機(jī)機(jī)體自由和約束模態(tài)分析[J];內(nèi)燃機(jī)與動(dòng)力裝置;2009年05期
8 龍英;滕召金;趙福水;;有限元模態(tài)分析現(xiàn)狀與發(fā)展趨勢(shì)[J];湖南農(nóng)機(jī);2009年07期
9 宋方臻;宋波;劉慧;;基于CRAS的測(cè)試技術(shù)綜合性實(shí)驗(yàn)[J];中國(guó)現(xiàn)代教育裝備;2009年05期
10 宋志鵬;王貴成;王樹(shù)林;;高速切削振動(dòng)的形成及其控制[J];工具技術(shù);2008年10期
相關(guān)碩士學(xué)位論文 前10條
1 冉恩全;基于最小二乘復(fù)指數(shù)法的局部模態(tài)參數(shù)識(shí)別及應(yīng)用[D];重慶大學(xué);2015年
2 梁魯魯;樹(shù)脂基礦物復(fù)合材料外圓磨床床身動(dòng)態(tài)特性分析及結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];南京理工大學(xué);2015年
3 魏新;基于有限元分析的臥式數(shù)控車床結(jié)構(gòu)動(dòng)態(tài)優(yōu)化設(shè)計(jì)[D];蘭州理工大學(xué);2014年
4 祁子軍;基于有限差分與殘差補(bǔ)償?shù)慕Y(jié)合部參數(shù)辨識(shí)方法研究[D];北京工業(yè)大學(xué);2013年
5 陳金;基于結(jié)合面的CKX53280銑車床整機(jī)動(dòng)態(tài)特性分析[D];華中科技大學(xué);2013年
6 連俊義;基于小波變換的工作模態(tài)參數(shù)識(shí)別方法研究[D];太原理工大學(xué);2011年
7 袁海濤;機(jī)床鑄鐵床身內(nèi)部型腔封砂結(jié)構(gòu)的特性研究[D];昆明理工大學(xué);2010年
8 王富強(qiáng);精密機(jī)床床身的動(dòng)態(tài)特性分析與優(yōu)化[D];蘭州理工大學(xué);2007年
9 許敏;機(jī)床固定結(jié)合面動(dòng)態(tài)與熱態(tài)特性分析[D];東南大學(xué);2006年
10 陳慶堂;基于ANSYS的XK713數(shù)控銑床有限元分析及優(yōu)化設(shè)計(jì)[D];東南大學(xué);2005年
,本文編號(hào):2071052
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2071052.html