Si、Sn元素對Cu-Ni-Sn-Si合金組織及性能的影響研究
本文選題:Cu-Ni-Sn-Si四元合金 + 顯微組織結(jié)構(gòu); 參考:《江西理工大學(xué)》2017年碩士論文
【摘要】:近年來儀器設(shè)備都朝著小型化、高效能的趨勢發(fā)展,這不僅要求電子元器件具備高集成度、飛快的信號傳輸速度,還要求其具備更高的性能。導(dǎo)電彈性銅合金材料以其突出的導(dǎo)熱性、熱穩(wěn)定性及力學(xué)等性能而被普遍地用于電子通訊、儀表、彈性導(dǎo)電元件等領(lǐng)域中。其中,Cu-Ni-Sn系合金借助其優(yōu)良的耐磨、耐腐蝕性能及良好的熱穩(wěn)定性等被用于生產(chǎn)制造各類彈性元件。但Cu-Ni-Sn系合金導(dǎo)電性能較差,其電導(dǎo)率通常在7%~8%IACS左右,且高Sn含量的Cu-Ni-Sn合金在凝固過程中容易出現(xiàn)嚴(yán)重的偏析現(xiàn)象而導(dǎo)致熱軋開裂,這不僅會影響其加工成品率,同時也無法保證該合金制品性能的均勻性;诖,本研究結(jié)合Cu-Ni-Sn、Cu-Ni-Si兩系合金的特點,針對低Sn含量且添加少量Si以代替Sn的Cu-Ni-Sn-Si四元合金進(jìn)行研究,系統(tǒng)研究了Si、Sn元素對Cu-Ni-Sn-Si合金組織及性能的影響規(guī)律,并探討了常規(guī)形變時效、雙冷軋雙時效工藝對Cu-Ni-Sn-Si合金的影響,從而確定出較優(yōu)的工藝參數(shù),以期獲得良好機(jī)械性能以及電導(dǎo)率的綜合,并為實際生產(chǎn)提供良好的理論依據(jù)。主要研究工作及結(jié)果如下:(1)鑄態(tài)Cu-Ni-Sn-Si合金組織中表現(xiàn)出明顯的枝晶偏析現(xiàn)象,而且添加一定量的Si、Sn元素不僅可細(xì)化合金組織,改善偏析,同時對該合金硬度值與導(dǎo)電率產(chǎn)生的影響規(guī)律基本一致,即隨著Si、Sn元素含量的增加,合金硬度值表現(xiàn)出持續(xù)增長的變化趨勢,而其電導(dǎo)率逐漸下降,且在相同實驗條件下Si元素對合金組織及性能影響作用更為顯著;合金經(jīng)預(yù)冷變形時效處理后,Sn原子仍完全固溶在Cu基體中,但是在相同時效條件下,添加的Si原子則容易與Ni形成Ni_2Si強(qiáng)化相,并在時效進(jìn)程中迅速地從基體中析出,從而使合金強(qiáng)化,即合金硬度值與電導(dǎo)率均得到顯著提高,且當(dāng)Si為1%時,時效強(qiáng)化作用最為顯著,但是當(dāng)Si的含量大于1%時,反而會阻礙合金的時效進(jìn)程。綜合比較,合金較優(yōu)的成分配比為:1%Si、1.5%Sn、4%Ni、余量為Cu。(2)Cu-4Ni-1.5Sn-Si合金經(jīng)70%熱軋后,再進(jìn)行0%~70%預(yù)冷變形,在350℃~500℃、2h~8h條件下進(jìn)行時效處理后發(fā)現(xiàn):增大預(yù)冷變形程度、在350℃~450℃范圍內(nèi)升高溫度均可促進(jìn)合金時效進(jìn)程,改善并提高其綜合性能,且在6h時均達(dá)到硬度峰值,故綜合比較得到合金較優(yōu)的時效工藝為:70%預(yù)冷變形、450℃×6h,在該時效工藝下合金硬度及電導(dǎo)率分別達(dá)到269HB、26.6%IACS。(3)為了定量地分析在時效進(jìn)程中合金預(yù)冷變形量對Ni_2Si相析出行為的影響關(guān)系,對預(yù)冷變形量為0%~70%,在450℃、保溫2h~8h條件下時效的Cu-4Ni-1.5Sn-Si合金時效動力學(xué)進(jìn)行了分析,并得到在時效過程中析出的Ni_2Si相體積分?jǐn)?shù)f與合金預(yù)冷變形量ε的關(guān)系為:f=1-exp(?)(-0.030*t~(0.524+0.410ε)),由此可知,增大預(yù)冷變形程度,可以有效地促進(jìn)Cu-4Ni-1.5Sn-Si合金時效析出進(jìn)程,從而在理論上驗證了適當(dāng)增大預(yù)冷變形量可有效地提高合金導(dǎo)電性能,因此在Cu-4Ni-1.5Sn-Si合金實際生產(chǎn)過程中,在時效熱處理前可以適當(dāng)增大其預(yù)冷變形程度,有效改善時效析出過程及效果,為合金綜合力學(xué)性能及導(dǎo)電性能的提高奠定良好基礎(chǔ)。(4)為了進(jìn)一步地改善合金綜合性能,對30%、50%冷軋,500℃×2h預(yù)時效態(tài)Cu-4Ni-1.5Sn-Si合金進(jìn)行70%二次冷軋后在375℃~450℃、保溫6~8h的條件下進(jìn)行二次時效處理發(fā)現(xiàn):合金的較優(yōu)雙冷軋時效工藝為:50%冷軋、500℃×2h預(yù)時效、70%冷軋、400℃×8h二次時效,在該時效工藝下合金的硬度和電導(dǎo)率可分別達(dá)到275HB、33.2%%IACS,與常規(guī)的時效工藝(70%冷軋、450℃×6h)對比合金的硬度值及電導(dǎo)率都得到了一定程度的提高,尤其是合金電導(dǎo)率增大了24.8%。
[Abstract]:In recent years, the equipment has been developing towards miniaturization and high efficiency. It not only requires electronic components with high integration and fast signal transmission speed, but also requires higher performance. Conductive elastic copper alloy materials are widely used in electronic communication and instruments for their outstanding thermal conductivity, thermal stability and mechanical properties. In the fields of elastic conductive components, Cu-Ni-Sn alloys are used to produce various kinds of elastic components with their excellent wear resistance, corrosion resistance and good thermal stability. However, the electrical conductivity of Cu-Ni-Sn alloys is poor, the conductivity is usually about 7% to 8%IACS, and the Cu-Ni-Sn alloy with high Sn content is easy to produce during the solidification process. The serious segregation phenomenon causes hot rolling and cracking, which not only affects the rate of finished product, but also can not guarantee the uniformity of the properties of the alloy products. Based on this, this research combines the characteristics of Cu-Ni-Sn, Cu-Ni-Si two system alloys and studies the Cu-Ni-Sn-Si four element alloys with low Sn content and a small amount of Si instead of Sn. The influence of Si and Sn elements on the microstructure and properties of Cu-Ni-Sn-Si alloy, and the influence of conventional Deformation Aging, double cold rolling double aging process on Cu-Ni-Sn-Si alloy, are discussed, so as to determine the better technological parameters, in order to obtain good mechanical properties and the synthesis of electrical conductivity, and provide a good theoretical basis for practical production. The following work and the results are as follows: (1) the apparent dendrite segregation in the microstructure of the cast Cu-Ni-Sn-Si alloy, and the addition of a certain amount of Si, the Sn element can not only refine the alloy structure and improve the segregation, but also have the same effect on the hardness value of the alloy and the conductivity of the alloy, that is, with the increase of the content of Si, Sn element and the hardness value of the alloy. In the same experimental conditions, the effect of the Si element on the microstructure and properties of the alloy is more significant, and the Sn atom is still completely dissolved in the Cu matrix after the precooling deformation aging treatment, but the addition of Si atoms can easily form Ni_2Si with Ni under the same aging condition. Strengthening phase and precipitating rapidly from the matrix in the aging process make the alloy strengthen, that is, the hardness value and electrical conductivity of the alloy are greatly improved. When the Si is 1%, the aging hardening is the most significant. But when the content of Si is greater than 1%, it will hinder the time effect process of the alloy. 1.5%Sn, 4%Ni, the residual amount is Cu. (2) Cu-4Ni-1.5Sn-Si alloy after 70% hot rolling and then 0% ~ 70% pre cooling deformation. It is found under the condition of 350 ~ 500 C and 2H to 8h. It is found that increasing the pre cooling deformation degree and increasing the temperature in the range of 350 to 450 C can promote the aging process, improve and improve its comprehensive properties, and both in 6h. In order to reach the peak of hardness, the better aging process is: 70% pre cooling deformation, 450 x 6h, the alloy hardness and electrical conductivity are 269HB respectively, 26.6%IACS. (3) in order to quantitatively analyze the influence of the pre cooling deformation amount on the precipitation behavior of Ni_2Si phase during the aging process, and the pre cooling deformation amount is 0%. To 70%, the aging kinetics of Cu-4Ni-1.5Sn-Si alloy aging under the condition of 450 C and 2H ~ 8h was analyzed. The relation between the Ni_2Si phase integral number f and the pre cooling deformation quantity of the alloy during the aging process was f=1-exp (?) (-0.030*t ~ (0.524+0.410)). Thus, the increase of the pre cooling deformation degree could effectively promote the Cu-4. The aging precipitation process of Ni-1.5Sn-Si alloy proves that the proper increase of pre cooling deformation can effectively improve the conductive properties of the alloy. Therefore, in the actual production process of Cu-4Ni-1.5Sn-Si alloy, the pre cooling deformation degree can be increased properly before the aging heat treatment, and the process and effect of aging precipitation can be effectively improved and the alloy comprehensive force is improved. (4) in order to improve the overall performance of the alloy (4) to further improve the overall performance of the alloy, 30%, 50% cold rolled, 500 C 2H pre aged Cu-4Ni-1.5Sn-Si alloy after 70% two cold rolling at 375 to 450, and 6 to 8h under the condition of 6 to 8h, found that the superior double cold rolling aging process of the alloy is 50%. Cold rolling, 500 C 2H preaging, 70% cold rolling and 400 x 8h two times aging, the hardness and electrical conductivity of the alloy can reach 275HB, 33.2%%IACS respectively under the aging process, and the hardness and electrical conductivity of the alloy are improved by the conventional aging process (70% cold rolling, 450 C 6H), especially the electrical conductivity of the alloy increases 24.8%..
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張顯娜;王清;陳勃;石堯;侯冬芳;劉永健;李冬梅;謝巧英;陳清香;王華;董闖;;溶質(zhì)元素(Ni,Sn)總量對Cu-Ni-Sn合金導(dǎo)電性能的影響[J];材料導(dǎo)報;2015年18期
2 鄭李媛;肖鵬;;V對Cu-7.5Ni-5Sn合金組織和性能影響[J];材料熱處理學(xué)報;2015年07期
3 黎三華;李周;雷前;汪明樸;申鐳諾;潘志勇;劉會群;;高強(qiáng)度Cu-Ni-(Al)-Si合金的組織和性能[J];稀有金屬材料與工程;2015年06期
4 李周;雷前;黎三華;申鐳諾;李思;;超高強(qiáng)彈性銅合金材料的研究進(jìn)展與展望[J];材料導(dǎo)報;2015年07期
5 苑和鋒;徐玲;;彈性銅合金研究現(xiàn)狀及發(fā)展趨勢[J];湖南有色金屬;2014年03期
6 范瑛;譚云;陶萍;豐杰;;鈹青銅的性能研究綜述[J];材料導(dǎo)報;2014年S1期
7 潘震;;鈹銅替代用高性能銅基彈性合金的開發(fā)現(xiàn)狀[J];材料開發(fā)與應(yīng)用;2014年02期
8 廖鈺敏;劉東輝;鄧麗華;;Cu-9.5Ni-2.3Sn-0.15Si合金組織與性能研究[J];上海有色金屬;2014年01期
9 陳一勝;傅政;朱志云;劉位江;;高強(qiáng)耐磨黃銅的研究現(xiàn)狀[J];有色金屬科學(xué)與工程;2012年05期
10 劉瑞蕊;周海濤;周嘯;陸德平;劉克明;彭謙之;彭勇;鐘芳華;;高強(qiáng)高導(dǎo)銅合金的研究現(xiàn)狀及發(fā)展趨勢[J];材料導(dǎo)報;2012年19期
相關(guān)博士學(xué)位論文 前1條
1 王艷輝;Cu-15Ni-8Sn-XSi合金和Cu-9Ni-2.5Sn-1.5Al-0.5Si合金中的相變及其對合金性能的影響[D];中南大學(xué);2004年
相關(guān)碩士學(xué)位論文 前2條
1 楊勝利;熱處理及微量Si元素對Cu-7.5Ni-5.0Sn合金組織與性能的影響[D];江西理工大學(xué);2013年
2 韓芳;粉末冶金法制備高強(qiáng)度Cu-Ni-Sn合金的工藝及性能研究[D];武漢科技大學(xué);2012年
,本文編號:2041355
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2041355.html