等徑角軋制6016鋁合金板材的組織及力學(xué)性能研究
發(fā)布時(shí)間:2018-06-16 17:54
本文選題:6016鋁合金 + 等徑角軋制; 參考:《湖南科技大學(xué)》2017年碩士論文
【摘要】:車身材料以鋁代鋼是乘用車減重,實(shí)現(xiàn)節(jié)能減排的重要途徑之一。但目前車身用6×××鋁合金各向異性強(qiáng)、成形性能差,是其現(xiàn)階段大規(guī)模應(yīng)用面臨的主要問題之一。本文以6016鋁合金為研究對(duì)象,采用等徑角軋制工藝調(diào)控板材內(nèi)部的織構(gòu)組分和所占比例,通過弱化織構(gòu)來提高鋁合金的成形性能。本文運(yùn)用了金相顯微組織、XRD宏觀織構(gòu)、準(zhǔn)靜態(tài)單軸拉伸試驗(yàn)、杯突試驗(yàn)等分析測(cè)試手段。對(duì)比了等徑角軋制板材與常規(guī)軋制板材組織及力學(xué)性能上的差異。重點(diǎn)研究了軋制路徑、模具通道夾角、板材預(yù)熱溫度三組工藝參數(shù)對(duì)板材組織及力學(xué)性能的影響。得出以下結(jié)論:(1)通過等徑角軋制可以使板材形變織構(gòu)離散,弱化再結(jié)晶織構(gòu),減弱各向異性,提高板材的成形性能。與常規(guī)軋制相比,等徑角軋制的RT態(tài)板材S織構(gòu)的體積分?jǐn)?shù)較低;T4P態(tài)板材Cube織構(gòu)較弱,其延伸率、(?)值和I_E值遠(yuǎn)高于常規(guī)軋制的板材。而屈服強(qiáng)度和Δr值較常規(guī)軋制低,具有較好的成形性能。(2)軋制路徑主要影響等徑角變形時(shí)板材的累積應(yīng)變程度。在二個(gè)道次軋制變形時(shí),AA(兩個(gè)道次的板法向不變)路徑的板材累積應(yīng)變比AB(兩個(gè)道次的板法向相反)路徑的板材高;其RT態(tài)板材中β取向線織構(gòu)較弱;T4P態(tài)板材中Cube織構(gòu)較弱,且存在少量較弱的{441}2(?)4、{210}001等織構(gòu),其成形性能更好,各向異性更小。(3)模具通道夾角主要影響等徑角變形時(shí)板材的剪切應(yīng)變和晶格旋轉(zhuǎn)程度。在模具通道夾角為120°、135°和150°范圍內(nèi),隨著夾角的增大,T4P態(tài)板材的晶粒尺寸逐漸增大,厚向分布均勻性逐漸提高。而在135o條件下RT態(tài)板材的β取向線織構(gòu)較弱;T4P態(tài)板材中Cube織構(gòu)較弱,還存在少量的{023}100、{212}(?)4等較弱的織構(gòu),其成形性能更好,各向異性更小。(4)在20℃、210℃、420℃三個(gè)溫度范圍內(nèi),隨著板材預(yù)熱溫度的升高,板材的成形性升高。420℃條件下,RT態(tài)板材發(fā)生動(dòng)態(tài)再結(jié)晶,形變織構(gòu)依然存在,但取向密度和體積分?jǐn)?shù)非常低,此外還出現(xiàn)了少量向再結(jié)晶織構(gòu)轉(zhuǎn)變的中間態(tài)織構(gòu);T4P態(tài)板材出現(xiàn)了少量的P{011}112織構(gòu)、Goss{110}001織構(gòu),各種織構(gòu)強(qiáng)度較弱,沒有強(qiáng)烈的再結(jié)晶織構(gòu),織構(gòu)無序分布。T4P態(tài)板材具有良好的塑性和成形性,其δ29%、σ0.2110MPa、(?)≈0.75、Δr≈0.16。而T8X態(tài)板材具有良好的烘烤硬化性能,其σ_(0.2)210MPa、σ_b335MPa。
[Abstract]:Aluminum substitute for body material is one of the important ways for passenger car to reduce weight and achieve energy saving and emission reduction. However, at present, 6 脳 脳 脳 aluminum alloy has strong anisotropy and poor formability, which is one of the main problems in large-scale application. In this paper, 6016 aluminum alloy is taken as the research object. The texture composition and proportion of sheet metal are controlled by equal diameter angle rolling process, and the formability of aluminum alloy is improved by weakening the texture. In this paper, metallographic microstructure and XRD macroscopic texture, quasi static uniaxial tensile test and cupping test were used. The structure and mechanical properties of equal-diameter angle rolling plate and conventional rolling plate were compared. The effects of rolling path, die channel angle and plate preheating temperature on the microstructure and mechanical properties of the sheet were studied. The following conclusion is drawn: (1) the deformation texture of the sheet metal can be dispersed by equal path angle rolling, the recrystallization texture can be weakened, the anisotropy can be weakened, and the formability of the sheet can be improved. Compared with conventional rolling, the volume fraction of S texture of RT sheet rolled at equal diameter angle is lower than that of T4P sheet, and its elongation is lower than that of conventional rolling. The value and Ike value of the plate are much higher than that of the conventional rolled plate. However, the yield strength and 螖 r value are lower than those of conventional rolling, and the rolling path has better formability. The cumulative strain of A / A (two pass plate normal invariant) paths is higher than that of AB (two pass normal opposite) paths, and the 尾 -orientation line texture of RT sheet is weaker than that of Cube texture in T4P sheet. Moreover, there are a few weak {441} 2 + 4 and {210} 001 textures, which have better formability and lower anisotropy. The channel angle of the die mainly influences the shear strain and the lattice rotation degree of the plate when the equal diameter angle is deformed. In the range of 120 擄angle 135 擄and 150 擄of die channel angle, the grain size of T4P sheet increases with the increase of the angle, and the uniformity of thick distribution increases gradually. Under 135o condition, the 尾 -orientation line texture of RT sheet is weaker than that of T4P sheet, and there are a few weak textures such as {023} 100, {212} T4P and so on. The formability of RT sheet is better, and the anisotropy is smaller in the temperature range of 20 鈩,
本文編號(hào):2027601
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2027601.html
最近更新
教材專著