電驅沖擊氣錘的沖擊性能建模和優(yōu)化
發(fā)布時間:2018-06-13 16:51
本文選題:電錘 + 數值模擬; 參考:《浙江大學》2017年碩士論文
【摘要】:電驅沖擊氣錘簡稱電錘是一種應用廣泛的電動工具,屬于沖擊機械的一種。目前國內電錘企業(yè)研發(fā)人員對電錘設計理論缺乏足夠的認識,導致設計工作過于依賴經驗,效率低下。為此,本文結合企業(yè)項目,通過數學推導建立了電錘沖擊系統的仿真模型,并采用組合試驗和優(yōu)化設計等手段,對電錘的性能進行分析和優(yōu)化,為電錘設計工作提供指導。全文共分為五章:第一章對電錘以及電動工具的國內外發(fā)展現狀進行歸納總結,包括行業(yè)發(fā)展、研究現狀等,分析了本文研究工作的必要性。在借鑒前人研究成果的基礎上,選擇研究的切入點和研究方法,從而確定了本文的組織結構;第二章首先建立了電錘驅動機構的數學模型,并編寫了仿真程序,實現了工作過程的數值模擬。然后分析了氣缸直徑、沖擊頻率、撞錘初始位置、撞錘質量、曲柄長度、補氣孔直徑以及補氣孔位置等電錘重要參數對工作性能的影響。最后對撞錘質量和曲柄長度兩個參數進行了兩因素三水平的組合試驗,并將試驗結果與仿真結果進行對比,驗證了模型的可靠性;第三章根據波動力學建立了電錘沖擊機構的數學模型,并編寫了仿真程序,實現了電錘沖擊鑿巖過程以及應力波傳遞過程的數值模擬。然后通過組合試驗方法分析了副錘結構參數的設計規(guī)律。為了驗證模型的正確性,利用有限元方法與所編寫的模擬程序計算結果進行了對比。最后通過優(yōu)化方法對副錘結構進行了優(yōu)化,并進行試驗,對比試驗數據和理論計算結果,驗證了理論模型的可靠性;第四章將驅動機構數學模型和沖擊機構數學模型相結合,建立了整個沖擊系統的仿真模型。在此基礎上,以沖擊系統結構參數作為優(yōu)化變量,以單次鑿入量為優(yōu)化目標,對沖擊系統在不同工況下的工作性能進行了優(yōu)化,得出了對不同工況都有良好適應性的優(yōu)化方案;第五章對全文的工作做了總結,并對后續(xù)的研究工作進行了展望。
[Abstract]:Electric drive impact gas hammer is a widely used electric tool, which belongs to impact machine. At present, the R & D personnel of domestic electric hammer enterprises lack sufficient understanding of the design theory of electric hammer, which results in the design work relying too much on experience and inefficiency. In this paper, the simulation model of electric hammer impact system is established by mathematical derivation combined with enterprise project, and the performance of electric hammer is analyzed and optimized by means of combination test and optimization design, which provides guidance for hammer design. The paper is divided into five chapters: the first chapter summarizes the development of electric hammer and electric tools at home and abroad, including the development of the industry, the status quo of research, and analyzes the necessity of the research work in this paper. On the basis of drawing lessons from the previous research results, the paper chooses the breakthrough point and research method to determine the organization structure of this paper. In chapter 2, the mathematical model of the electric hammer driving mechanism is established, and the simulation program is written. The numerical simulation of the working process is realized. Then the effects of cylinder diameter, impact frequency, initial position of hammer, mass of hammer, length of crank, diameter of air supply hole and position of air supply hole on the working performance of electric hammer are analyzed. Finally, the impact hammer mass and crank length are tested in combination with two factors and three levels, and the reliability of the model is verified by comparing the test results with the simulation results. In chapter 3, according to the wave mechanics, the mathematical model of the hammer shock mechanism is established, and the simulation program is compiled to realize the numerical simulation of the hammer impact rock drilling process and the stress wave transfer process. Then the design law of the structural parameters of the auxiliary hammer is analyzed by the combined test method. In order to verify the correctness of the model, the finite element method is compared with the calculated results of the simulation program. Finally, the auxiliary hammer structure is optimized by optimization method, and the experimental results are compared to verify the reliability of the theoretical model. Chapter four combines the driving mechanism mathematical model with the impact mechanism mathematical model. The simulation model of the whole impact system is established. On this basis, taking the structural parameters of the impact system as the optimization variable and the single chisel as the optimization objective, the working performance of the impact system under different working conditions is optimized, and the optimal scheme with good adaptability to different working conditions is obtained. The fifth chapter summarizes the work of the paper and prospects the future research work.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TS914.5
【參考文獻】
相關期刊論文 前10條
1 丁問司;袁林燕;丁元文;范亞軍;;氣墊傳動沖擊錘鉆沖擊特性影響分析[J];振動與沖擊;2015年10期
2 譚華;;電錘氣缸氣孔對鉆孔效率的影響[J];機床與液壓;2013年07期
3 周小軍;姜樂華;高經緯;;基于AMESim的液壓缸內泄漏仿真分析[J];機床與液壓;2012年23期
4 丁問司;熊江;;電驅沖擊氣錘沖擊特性建模與仿真研究[J];振動與沖擊;2012年19期
5 趙伏軍;謝世勇;潘建忠;黃壽元;;動靜組合載荷作用下巖石破碎數值模擬及試驗研究[J];巖土工程學報;2011年08期
6 方偉;劉紅娟;;電動工具產品的概述及其發(fā)展趨勢[J];科技信息(科學教研);2008年03期
7 周仁斌;謝鐵邦;崔清斌;;自行火炮液壓系統泄漏機理及影響因素研究[J];湖北工業(yè)大學學報;2006年02期
8 馬曉娟;電錘及其壓縮真空式沖擊機構[J];電動工具;1999年02期
9 程景山;;電錘工作原理分析[J];試驗技術與試驗機;1991年04期
10 徐小荷;;撞擊鑿入系統的數值計算方法[J];巖石力學與工程學報;1984年01期
,本文編號:2014703
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2014703.html
最近更新
教材專著