電驅(qū)沖擊氣錘的沖擊性能建模和優(yōu)化
本文選題:電錘 + 數(shù)值模擬 ; 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:電驅(qū)沖擊氣錘簡(jiǎn)稱電錘是一種應(yīng)用廣泛的電動(dòng)工具,屬于沖擊機(jī)械的一種。目前國(guó)內(nèi)電錘企業(yè)研發(fā)人員對(duì)電錘設(shè)計(jì)理論缺乏足夠的認(rèn)識(shí),導(dǎo)致設(shè)計(jì)工作過(guò)于依賴經(jīng)驗(yàn),效率低下。為此,本文結(jié)合企業(yè)項(xiàng)目,通過(guò)數(shù)學(xué)推導(dǎo)建立了電錘沖擊系統(tǒng)的仿真模型,并采用組合試驗(yàn)和優(yōu)化設(shè)計(jì)等手段,對(duì)電錘的性能進(jìn)行分析和優(yōu)化,為電錘設(shè)計(jì)工作提供指導(dǎo)。全文共分為五章:第一章對(duì)電錘以及電動(dòng)工具的國(guó)內(nèi)外發(fā)展現(xiàn)狀進(jìn)行歸納總結(jié),包括行業(yè)發(fā)展、研究現(xiàn)狀等,分析了本文研究工作的必要性。在借鑒前人研究成果的基礎(chǔ)上,選擇研究的切入點(diǎn)和研究方法,從而確定了本文的組織結(jié)構(gòu);第二章首先建立了電錘驅(qū)動(dòng)機(jī)構(gòu)的數(shù)學(xué)模型,并編寫(xiě)了仿真程序,實(shí)現(xiàn)了工作過(guò)程的數(shù)值模擬。然后分析了氣缸直徑、沖擊頻率、撞錘初始位置、撞錘質(zhì)量、曲柄長(zhǎng)度、補(bǔ)氣孔直徑以及補(bǔ)氣孔位置等電錘重要參數(shù)對(duì)工作性能的影響。最后對(duì)撞錘質(zhì)量和曲柄長(zhǎng)度兩個(gè)參數(shù)進(jìn)行了兩因素三水平的組合試驗(yàn),并將試驗(yàn)結(jié)果與仿真結(jié)果進(jìn)行對(duì)比,驗(yàn)證了模型的可靠性;第三章根據(jù)波動(dòng)力學(xué)建立了電錘沖擊機(jī)構(gòu)的數(shù)學(xué)模型,并編寫(xiě)了仿真程序,實(shí)現(xiàn)了電錘沖擊鑿巖過(guò)程以及應(yīng)力波傳遞過(guò)程的數(shù)值模擬。然后通過(guò)組合試驗(yàn)方法分析了副錘結(jié)構(gòu)參數(shù)的設(shè)計(jì)規(guī)律。為了驗(yàn)證模型的正確性,利用有限元方法與所編寫(xiě)的模擬程序計(jì)算結(jié)果進(jìn)行了對(duì)比。最后通過(guò)優(yōu)化方法對(duì)副錘結(jié)構(gòu)進(jìn)行了優(yōu)化,并進(jìn)行試驗(yàn),對(duì)比試驗(yàn)數(shù)據(jù)和理論計(jì)算結(jié)果,驗(yàn)證了理論模型的可靠性;第四章將驅(qū)動(dòng)機(jī)構(gòu)數(shù)學(xué)模型和沖擊機(jī)構(gòu)數(shù)學(xué)模型相結(jié)合,建立了整個(gè)沖擊系統(tǒng)的仿真模型。在此基礎(chǔ)上,以沖擊系統(tǒng)結(jié)構(gòu)參數(shù)作為優(yōu)化變量,以單次鑿入量為優(yōu)化目標(biāo),對(duì)沖擊系統(tǒng)在不同工況下的工作性能進(jìn)行了優(yōu)化,得出了對(duì)不同工況都有良好適應(yīng)性的優(yōu)化方案;第五章對(duì)全文的工作做了總結(jié),并對(duì)后續(xù)的研究工作進(jìn)行了展望。
[Abstract]:Electric drive impact gas hammer is a widely used electric tool, which belongs to impact machine. At present, the R & D personnel of domestic electric hammer enterprises lack sufficient understanding of the design theory of electric hammer, which results in the design work relying too much on experience and inefficiency. In this paper, the simulation model of electric hammer impact system is established by mathematical derivation combined with enterprise project, and the performance of electric hammer is analyzed and optimized by means of combination test and optimization design, which provides guidance for hammer design. The paper is divided into five chapters: the first chapter summarizes the development of electric hammer and electric tools at home and abroad, including the development of the industry, the status quo of research, and analyzes the necessity of the research work in this paper. On the basis of drawing lessons from the previous research results, the paper chooses the breakthrough point and research method to determine the organization structure of this paper. In chapter 2, the mathematical model of the electric hammer driving mechanism is established, and the simulation program is written. The numerical simulation of the working process is realized. Then the effects of cylinder diameter, impact frequency, initial position of hammer, mass of hammer, length of crank, diameter of air supply hole and position of air supply hole on the working performance of electric hammer are analyzed. Finally, the impact hammer mass and crank length are tested in combination with two factors and three levels, and the reliability of the model is verified by comparing the test results with the simulation results. In chapter 3, according to the wave mechanics, the mathematical model of the hammer shock mechanism is established, and the simulation program is compiled to realize the numerical simulation of the hammer impact rock drilling process and the stress wave transfer process. Then the design law of the structural parameters of the auxiliary hammer is analyzed by the combined test method. In order to verify the correctness of the model, the finite element method is compared with the calculated results of the simulation program. Finally, the auxiliary hammer structure is optimized by optimization method, and the experimental results are compared to verify the reliability of the theoretical model. Chapter four combines the driving mechanism mathematical model with the impact mechanism mathematical model. The simulation model of the whole impact system is established. On this basis, taking the structural parameters of the impact system as the optimization variable and the single chisel as the optimization objective, the working performance of the impact system under different working conditions is optimized, and the optimal scheme with good adaptability to different working conditions is obtained. The fifth chapter summarizes the work of the paper and prospects the future research work.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TS914.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁問(wèn)司;袁林燕;丁元文;范亞軍;;氣墊傳動(dòng)沖擊錘鉆沖擊特性影響分析[J];振動(dòng)與沖擊;2015年10期
2 譚華;;電錘氣缸氣孔對(duì)鉆孔效率的影響[J];機(jī)床與液壓;2013年07期
3 周小軍;姜樂(lè)華;高經(jīng)緯;;基于AMESim的液壓缸內(nèi)泄漏仿真分析[J];機(jī)床與液壓;2012年23期
4 丁問(wèn)司;熊江;;電驅(qū)沖擊氣錘沖擊特性建模與仿真研究[J];振動(dòng)與沖擊;2012年19期
5 趙伏軍;謝世勇;潘建忠;黃壽元;;動(dòng)靜組合載荷作用下巖石破碎數(shù)值模擬及試驗(yàn)研究[J];巖土工程學(xué)報(bào);2011年08期
6 方偉;劉紅娟;;電動(dòng)工具產(chǎn)品的概述及其發(fā)展趨勢(shì)[J];科技信息(科學(xué)教研);2008年03期
7 周仁斌;謝鐵邦;崔清斌;;自行火炮液壓系統(tǒng)泄漏機(jī)理及影響因素研究[J];湖北工業(yè)大學(xué)學(xué)報(bào);2006年02期
8 馬曉娟;電錘及其壓縮真空式?jīng)_擊機(jī)構(gòu)[J];電動(dòng)工具;1999年02期
9 程景山;;電錘工作原理分析[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);1991年04期
10 徐小荷;;撞擊鑿入系統(tǒng)的數(shù)值計(jì)算方法[J];巖石力學(xué)與工程學(xué)報(bào);1984年01期
,本文編號(hào):2014703
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2014703.html