強化研磨加工軸承滾道疲勞壽命研究
本文選題:強化研磨 + 軸承滾道; 參考:《廣州大學》2017年碩士論文
【摘要】:軸承廣泛地應用于各行各業(yè),其性能的好壞直接關系到整個裝備的使用壽命的長短。隨著現(xiàn)代工業(yè)和科學技術的發(fā)展,對于軸承的高可靠性、高精度、承載能力、動態(tài)性能、高速高溫和輕量化、小型化、組合化等提出了愈來愈高的要求。滾動軸承結構雖然簡單,但其設計和制造過程卻十分復雜,掌握軸承的設計原理與制造工藝,才能生產(chǎn)出滿足人們需求的軸承以及相關裝備。本文基于一種金屬材料強化研磨高性能加工技術,用這種技術方法處理軸承滾道表面,使之產(chǎn)生殘余應力,研究殘余應力的產(chǎn)生與分布,并通過壽命試驗來說明這種加工方法對于軸承壽命的影響。本文首先通過理論分析,結合Hertz理論給出了殘余應力的預測模型,對6組不同強化研磨加工時間下的試樣進行金相分析,推導出了強化研磨時間與強化層厚度的關系。通過SEM分析,對強化層進行了分區(qū),解釋了強化研磨產(chǎn)生殘余應力的實質(zhì)原因。通過有限元方法,求解出了在某一載荷之下軸承位移、等效應變、等效應力和接觸壓力的數(shù)值,分析了殘余應力對接觸應力及裂紋的影響,不同徑向載荷下軸承的疲勞壽命,并與赫茲解進行了比較,結果表明:赫茲理論解比仿真解大,隨著徑向載荷的增大,軸承的外圈與內(nèi)圈的接觸應力也相應地增大,外圈的接觸應力總是比內(nèi)圈的接觸應力要小,外圈的壽命始終要大于內(nèi)圈壽命,殘余應力對軸承的接觸應力基本無影響,殘余壓應力對裂紋的生長有抑制作用。然后對強化研磨殘余應力場進行檢測,并對對應力釋放造成的影響通過彈性理論的計算加以修正,得到殘余應力在深度方向的分布關系。分布關系表明強化研磨工藝噴射比較均勻,隨著測量深度地增加,殘余應力值隨之增加。在30μm深度以上,殘余壓應力衰減很快,在120μm深度左右,基本上沒有殘余應力,在150μm~180μm之間,殘余應力會由壓應力轉變?yōu)槔瓚。由于測量值與修正值相差始終小于0.15%,說明應力釋放造成影響可以忽略。最后進行了軸承的壽命試驗,分析了試驗過程軸承溫度,徑向游隙,振動的變化情況。
[Abstract]:Bearing is widely used in all walks of life. Its performance is directly related to the length of the service life of the whole equipment. With the development of modern industry and science and technology, the high reliability, high precision, bearing capacity, dynamic performance, high speed and high temperature and light quantization, miniaturization and combination of bearing are more and more demanding. Although the bearing structure is simple, its design and manufacturing process is very complicated. In order to produce bearings and related equipment to meet the needs of the people, the bearings and related equipment can be produced by mastering the design principle and manufacturing process of the bearing. The residual stress is produced and distributed, and the effect of this processing method on the bearing life is explained by the life test. First, the prediction model of residual stress is given by theoretical analysis and Hertz theory, and the metallographic analysis is carried out on 6 groups of specimens with different intensification grinding time, and the strengthening research is derived. The relationship between the grinding time and the thickness of the reinforced layer is made. Through the SEM analysis, the strengthening layer is divided and the substantial reasons for the reinforcement of the residual stress are explained. Through the finite element method, the value of the bearing displacement, equivalent strain, equivalent stress and contact pressure under a certain load is solved, and the residual stress is analyzed for contact stress and crack. The fatigue life of the bearing under different radial loads is compared with the Hertz solution. The results show that the Hertz theoretical solution is larger than the simulation solution. With the increase of the radial load, the contact stress between the outer ring and the inner ring of the bearing increases correspondingly, and the contact stress of the outer ring is always smaller than that of the inner ring, and the life of the outer ring is always larger. In the inner ring life, the residual stress has no effect on the contact stress of the bearing, and the residual compressive stress has a restraining effect on the growth of the crack. Then the residual stress field of the reinforced lapping is detected, and the effect of the corresponding force release is corrected by the calculation of the elastic theory, and the distribution of the residual stress in the depth direction is obtained. The relationship shows that the intensified grinding process is more uniform, and the residual stress value increases with the depth of measurement. At the depth of 30 mu m, the residual stress attenuation is very fast, at the depth of 120 mu m, the residual stress is basically no residual stress, and the residual stress will change from pressure stress to tensile stress at 150 u m~180 mu m. The difference of value is always less than 0.15%, which indicates that the effect of stress release can be ignored. Finally, the life test of bearing is carried out, and the change of bearing temperature, radial clearance and vibration in the test process is analyzed.
【學位授予單位】:廣州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH133.3;TG580.68
【參考文獻】
相關期刊論文 前10條
1 王鈾;;熱噴涂納米涂層20年回顧與展望[J];表面技術;2016年09期
2 曹宇鵬;徐影;馮愛新;花國然;周東呈;張津超;;激光沖擊強化7050鋁合金薄板表面殘余應力形成機制的實驗研究[J];中國激光;2016年07期
3 王鈾;王亮;劉賽月;劉勇;王超會;鄒志偉;;熱噴涂納米結構La_2Zr_2O_7(LZ)/8YSZ雙陶瓷熱障涂層[J];中國表面工程;2016年01期
4 馬可;王濱;趙志強;;潤滑與軸承壽命的關系淺析[J];哈爾濱軸承;2015年03期
5 楊忠須;劉貴民;閆濤;朱曉瑩;;熱噴涂Mo及Mo基復合涂層研究進展[J];表面技術;2015年05期
6 葛恩德;蘇宏華;程遠慶;傅玉燦;徐九華;肖睿恒;;TC4板孔冷擠壓強化殘余應力分布與疲勞壽命[J];中國機械工程;2015年07期
7 王德祥;葛培琪;畢文波;鄭傳棟;;滾動軸承內(nèi)圈滾道表層殘余應力分布實驗研究[J];華中科技大學學報(自然科學版);2015年03期
8 張碩;張麗娜;葉篤毅;劉建中;;基于深度-敏感壓痕技術的噴丸鋁鋰合金板殘余應力分布特征[J];材料科學與工程學報;2014年05期
9 產(chǎn)文兵;姚廷強;謝偉;譚陽;;深溝球軸承動力學有限元仿真分析[J];昆明理工大學學報(自然科學版);2013年05期
10 陳月華;劉永永;江德鳳;袁禮華;;化學鍍鎳施鍍過程穩(wěn)定性分析[J];表面技術;2013年02期
相關會議論文 前1條
1 李興林;蔣萬里;曹茂來;張燕遼;陸水根;陳炳順;;滾動軸承可靠性工程技術應用現(xiàn)狀及發(fā)展[A];2015年全國機械行業(yè)可靠性技術學術交流會暨第五屆可靠性工程分會第二次全體委員大會論文集[C];2015年
相關博士學位論文 前3條
1 鄧松;軸承滾道疲勞損傷機理研究[D];武漢理工大學;2014年
2 彭朝林;汽車輪轂軸承脂潤滑理論與潤滑失效機理研究[D];華南理工大學;2013年
3 王延慶;鋼表面凹坑紋理的制備及摩擦學性能研究[D];中國礦業(yè)大學;2010年
相關碩士學位論文 前7條
1 李君;熱噴涂技術應用與發(fā)展調(diào)研分析[D];吉林大學;2015年
2 李萬青;等離子噴涂WC-17Co納米涂層的工藝及組織性能研究[D];哈爾濱工業(yè)大學;2014年
3 李欣;噴丸殘余應力場及三維次表面裂紋應力強度因子求解[D];上海交通大學;2014年
4 袁藝;中國軸承工業(yè)的發(fā)展與對外貿(mào)易研究[D];河南農(nóng)業(yè)大學;2013年
5 欒星亮;U75V鋼軌表面激光強化的研究[D];遼寧科技大學;2013年
6 李文雄;軸承強化研磨加工工藝參數(shù)優(yōu)化的研究[D];廣州大學;2012年
7 劉傳劍;軸承強化研磨加工有限元仿真分析及設備研制[D];廣州大學;2011年
,本文編號:1991883
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1991883.html