多孔介質(zhì)金屬泡沫傳熱熱阻及等價(jià)導(dǎo)熱系數(shù)的實(shí)驗(yàn)研究
本文選題:多孔介質(zhì)金屬泡沫 + 骨架導(dǎo)熱熱阻 ; 參考:《華東交通大學(xué)》2017年碩士論文
【摘要】:隨著人類的發(fā)展,科技的進(jìn)步,對(duì)能源的需求量日益增加,能源緊缺問題也受到愈發(fā)廣泛的關(guān)注。提高能源利用效率能夠綠色、經(jīng)濟(jì)的降低能源的消耗,是節(jié)約能源的首選方案。多孔介質(zhì)金屬泡沫作為一種新型材料,在航空航天、電子工業(yè)等領(lǐng)域受到廣泛關(guān)注。其兼顧多孔性及金屬剛性使其具有強(qiáng)化傳熱的特點(diǎn)。近年來,多孔介質(zhì)傳熱的研究成為熱點(diǎn),對(duì)傳熱模型的描述也日趨成熟,但是在能量方程的描述中,對(duì)于多孔介質(zhì)導(dǎo)熱系數(shù)的選擇仍有分歧。本文針對(duì)兩能量模型中導(dǎo)熱系數(shù)的定義,提出一個(gè)更符合實(shí)際的等價(jià)導(dǎo)熱系數(shù),并以泡沫銅為例對(duì)等價(jià)導(dǎo)熱系數(shù)進(jìn)行了計(jì)算。本文搭建了多孔介質(zhì)金屬泡沫傳熱熱阻測(cè)定實(shí)驗(yàn)裝置,并測(cè)得了泡沫銅的傳熱總熱阻、骨架導(dǎo)熱熱阻以及表面接觸熱阻。分別對(duì)厚度、結(jié)構(gòu)參數(shù)、加熱功率、壓緊力等不同因素對(duì)實(shí)驗(yàn)的影響進(jìn)行了分析。實(shí)驗(yàn)結(jié)果表明:實(shí)驗(yàn)總熱阻隨壓緊力的增大而減小,減小幅度最大可達(dá)50%以上。通過不同厚度試件數(shù)據(jù)的推導(dǎo)計(jì)算,得到了骨架導(dǎo)熱熱阻并進(jìn)行了擬合回歸。在孔隙率相近時(shí),孔隙密度(PPI)越大,其骨架導(dǎo)熱熱阻越小?紫睹芏(PPI)一致時(shí),孔隙率越大其熱阻也越大。表面接觸熱阻對(duì)傳熱的影響很大,并通過計(jì)算將試件的表面接觸熱阻量化。提出并定義了更符合多孔介質(zhì)傳熱機(jī)理的等價(jià)導(dǎo)熱系數(shù),基于熱阻一致性原則,根據(jù)等價(jià)導(dǎo)熱系數(shù)的定義分別計(jì)算得到了立方體細(xì)絲模型和十四面體模型的有效導(dǎo)熱面積。通過骨架導(dǎo)熱熱阻的實(shí)驗(yàn)數(shù)據(jù)與上述模型參數(shù)相結(jié)合得出了相應(yīng)模型的等價(jià)導(dǎo)熱系數(shù)的值。
[Abstract]:With the development of human beings and the progress of science and technology, the demand for energy is increasing day by day. It is the first choice to save energy by improving energy efficiency and reducing energy consumption economically. As a new type of material, porous metal foam has attracted wide attention in aerospace, electronic industry and other fields. It has the characteristics of enhanced heat transfer due to both porosity and metal rigidity. In recent years, the study of heat transfer in porous media has become a hot topic, and the description of heat transfer model has become more and more mature. However, in the description of energy equation, the choice of thermal conductivity of porous media is still different. In this paper, according to the definition of thermal conductivity in two-energy model, a more practical equivalent thermal conductivity is proposed, and the equivalent thermal conductivity is calculated by taking copper foam as an example. In this paper, an experimental device for measuring heat transfer resistance of metal foam in porous media is set up, and the total heat transfer resistance, skeleton thermal conductivity resistance and surface contact thermal resistance of copper foam are measured. The effects of thickness, structural parameters, heating power and compaction force on the experiment are analyzed. The experimental results show that the total thermal resistance of the experiment decreases with the increase of the compression force, and the maximum reduction can be more than 50%. Through the derivation and calculation of the specimen data with different thickness, the thermal resistance of the skeleton is obtained and the fitting regression is carried out. When the porosity is close, the larger the pore density is, the smaller the thermal resistance of the skeleton is. The larger the porosity, the greater the thermal resistance when the pore density is the same. The surface contact thermal resistance has a great influence on heat transfer, and the surface contact thermal resistance of the specimen is quantified by calculation. Based on the principle of consistency of thermal resistance and the definition of equivalent thermal conductivity, the effective thermal conductivity of the cubic filament model and the ten-tetrahedron model are calculated, respectively. The equivalent thermal conductivity of the corresponding model is obtained by combining the experimental data of the thermal conductivity of the skeleton with the above model parameters.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG139
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 萬忠民;劉靖;陳敏;管瓊;涂正凱;;高熱流密度散熱的多孔微熱沉流動(dòng)與傳熱實(shí)驗(yàn)研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年29期
2 汪天送;屈治國(guó);何雅玲;陶文銓;;燒結(jié)金屬纖維板大空間自然對(duì)流實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2011年04期
3 王杰利;屈治國(guó);李文強(qiáng);陶文銓;盧天健;;封裝有相變材料的金屬泡沫復(fù)合散熱器實(shí)驗(yàn)研究[J];工程熱物理學(xué)報(bào);2011年02期
4 張濤;余建祖;高紅霞;;TPS法測(cè)定泡沫銅/石蠟復(fù)合相變材料熱物性[J];太陽能學(xué)報(bào);2010年05期
5 屈治國(guó);徐治國(guó);陶文銓;盧天健;;通孔金屬泡沫中的空氣自然對(duì)流傳熱實(shí)驗(yàn)研究[J];西安交通大學(xué)學(xué)報(bào);2009年01期
6 陸威;趙長(zhǎng)穎;屈治國(guó);;金屬泡沫填充水平圓管內(nèi)單相對(duì)流換熱研究[J];工程熱物理學(xué)報(bào);2008年11期
7 代琳娜;趙長(zhǎng)穎;唐桂華;徐治國(guó);屈治國(guó);;充滿金屬泡沫的方腔自然對(duì)流數(shù)值模擬[J];工程熱物理學(xué)報(bào);2008年10期
相關(guān)碩士學(xué)位論文 前1條
1 彭招;方腔內(nèi)金屬泡沫—水的自然對(duì)流換熱實(shí)驗(yàn)研究[D];華東交通大學(xué);2016年
,本文編號(hào):1984785
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1984785.html