硅鋁合金激光焊接的仿真及微觀分析
本文選題:硅鋁合金 + ANSYS軟件 ; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:近些年來(lái)硅鋁合金被廣泛用作微波電子封裝材料。硅鋁合金材料的熱膨脹系數(shù)小且與電子器件硅板的熱膨脹系數(shù)相近,密度比柯伐合金等微電子封裝材料低,和鋁合金一樣有著很高的導(dǎo)熱系數(shù),通過(guò)調(diào)整硅在鋁中的百分比含量可以制得不同性能的硅鋁合金。微波器件屬于精密電子器件,體積小,封焊溫度不能過(guò)高,不適于采用電弧焊等焊接方法。激光具有較高的能量和較小的加熱區(qū)域允許對(duì)電子封裝材料進(jìn)行焊接密封。但是硅鋁合金材料中有大塊的初晶硅顆粒以及表面附著一層薄的氧化層等因素容易造成激光焊接后腔體的漏氣失效,而且焊接工藝參數(shù)的控制也影響著焊接的效果。本文首先對(duì)微觀分析技術(shù)進(jìn)行了概述,對(duì)掃描電子顯微鏡和能譜儀的原理進(jìn)行了簡(jiǎn)要的介紹,通過(guò)硅鋁合金Al4047的二次電子成像與背散射成像的對(duì)比,說(shuō)明了二次電子成像與背散射成像的不同之處,并且簡(jiǎn)單提及硅鋁合金焊縫的線掃描,對(duì)線掃描的應(yīng)用做了介紹。其次,通過(guò)對(duì)三種不同硅鋁合金材料制造的失效的封裝腔體進(jìn)行分析,得到導(dǎo)致腔體漏氣失效的原因主要是有兩種:1)硅鋁合金材料不適合焊接;2)焊接操作不當(dāng)生成裂紋、氣孔、夾渣、焊縫覆蓋不完全等缺陷導(dǎo)致封裝腔體漏氣。通過(guò)運(yùn)用SEM和EDS失效分析手段來(lái)對(duì)上述兩種失效原因進(jìn)行研究并提出提高產(chǎn)品合格率的手段。再次,通過(guò)對(duì)硅鋁合金4047蓋板和鋁合金6061殼體組成的微波腔體進(jìn)行焊接,通過(guò)改變焊接的工藝參數(shù),得出了不同的焊接工藝參數(shù)對(duì)熔池尺寸大小的影響。最后,針對(duì)硅鋁合金腔體進(jìn)行了有限元模擬,在ANSYS軟件中分別建立硅鋁合金平板模型和腔體模型并選擇高斯熱源作為激光熱源模型。通過(guò)進(jìn)行平板模型得出了在指定的焊接條件下平板的溫度分布和應(yīng)力分布,得出了兩種不同硅鋁合金材料激光焊接時(shí)熔池的形狀和焊縫兩側(cè)的溫度和應(yīng)力分布規(guī)律。然后進(jìn)行了腔體模型的仿真,并對(duì)它整體的溫度和應(yīng)力分布圖進(jìn)行分析。
[Abstract]:Silicon aluminum alloys have been widely used as microwave electronic packaging materials in recent years. The thermal expansion coefficient of Si-Al alloy is small and close to that of electronic device silicon plate. The density of Si-Al alloy is lower than that of other microelectronic packaging materials such as Kovar alloy, and the thermal conductivity of Si-Al alloy is as high as that of aluminum alloy. Silicon aluminum alloy with different properties can be prepared by adjusting the percentage content of silicon in aluminum. Microwave device is a precision electronic device with small size and high sealing temperature, so it is not suitable for welding methods such as arc welding. The laser has higher energy and smaller heating area to allow welding sealing of electronic packaging materials. However, some factors, such as bulk primary silicon particles and a thin oxide layer attached to the surface of silicon aluminum alloy, can easily cause air leakage failure of the cavity after laser welding, and the control of welding process parameters also affects the welding effect. In this paper, the principle of scanning electron microscope (SEM) and energy spectrometer (EDS) are briefly introduced, and the comparison between secondary electron imaging and backscattering imaging of Al4047 is given. The difference between secondary electron imaging and backscattering imaging is explained, and the linear scanning of silicon aluminum alloy welds is briefly mentioned, and the application of line scanning is introduced. Secondly, through the analysis of three different kinds of silicon aluminum alloy materials, it is found that there are two kinds of silicon aluminum alloy materials that are not suitable for welding, such as cracks and pores, which are not suitable for welding, and the main reasons are that two kinds of silicon aluminum alloy materials are not suitable for welding, and the main reason is that two kinds of silicon aluminum alloy materials are not suitable for welding. Defects such as slag inclusion, incomplete weld cover, etc., lead to gas leakage in the packaging chamber. By means of SEM and EDS failure analysis, the above two failure reasons are studied and the means to improve the qualified rate of products are put forward. Thirdly, by welding the microwave cavity composed of silicon aluminum alloy 4047 cover plate and aluminum alloy 6061 shell, the influence of different welding parameters on the size of weld pool is obtained by changing the welding process parameters. Finally, the finite element simulation is carried out for the silicon-aluminum alloy cavity. In the ANSYS software, the Si-Al alloy flat plate model and the cavity model are established, and the Gao Si heat source is selected as the laser heat source model. The temperature distribution and stress distribution of the plate under the specified welding conditions are obtained by using the plate model. The shape of the molten pool and the distribution of temperature and stress on both sides of the weld are obtained during laser welding of two different kinds of Si-Al alloy materials. Then, the simulation of the cavity model is carried out, and the distribution of temperature and stress is analyzed.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG456.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋芳芳;金亮;恩云飛;李斌;;異種金屬激光焊接的溫度場(chǎng)分析方法及應(yīng)用[J];焊接技術(shù);2016年12期
2 徐驍;劉艷;陳潔民;程凱;;電子封裝用硅鋁合金激光氣密焊接研究[J];電子與封裝;2016年08期
3 方坤;王傳偉;梁寧;王國(guó)超;宋奎晶;從茜;;高硅鋁合金T/R盒體激光封焊應(yīng)力分析及優(yōu)化設(shè)計(jì)[J];焊接學(xué)報(bào);2016年05期
4 季興橋;李?lèi)?彭挺;;基于硅鋁合金微電子集成工藝研究[J];電子工藝技術(shù);2016年02期
5 郝新鋒;劉彥強(qiáng);嚴(yán)偉;樊建中;;國(guó)產(chǎn)粉末冶金硅鋁合金的封裝性能研究[J];電子機(jī)械工程;2015年05期
6 陳以鋼;田飛飛;邵登云;戴立強(qiáng);祝超;;硅鋁合金在微波模塊電路封裝中的應(yīng)用[J];半導(dǎo)體技術(shù);2015年04期
7 周明智;雷黨剛;李正;;高硅鋁合金殼體激光封焊缺陷及機(jī)制分析[J];電子機(jī)械工程;2013年06期
8 盧艷;鄭世華;邢曉林;;7075鋁合金激光焊接殘余應(yīng)力及變形的有限元數(shù)值模擬[J];熱加工工藝;2013年21期
9 欒兆菊;;微波組件激光封焊的溫度場(chǎng)仿真[J];電子機(jī)械工程;2013年05期
10 劉文水;王日初;彭超群;莫靜貽;朱學(xué)衛(wèi);彭健;;噴射沉積電子封裝用高硅鋁合金的研究進(jìn)展[J];中國(guó)有色金屬學(xué)報(bào);2012年12期
相關(guān)會(huì)議論文 前2條
1 辜誠(chéng);魏艷紅;占小紅;;鋁合金激光焊接氣孔形成機(jī)理研究現(xiàn)狀及發(fā)展[A];第二十次全國(guó)焊接學(xué)術(shù)會(huì)議論文集[C];2015年
2 車(chē)鑫宇;黃一哲;尹越;;T型接頭焊接殘余應(yīng)力及變形的數(shù)值模擬[A];第十四屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2014年
相關(guān)碩士學(xué)位論文 前10條
1 張赫吉;激光平板焊過(guò)程中溫度場(chǎng)及殘余應(yīng)力的研究[D];長(zhǎng)春理工大學(xué);2016年
2 劉進(jìn)偉;高硅鋁合金的接觸反應(yīng)釬焊/擴(kuò)散焊實(shí)驗(yàn)研究[D];合肥工業(yè)大學(xué);2015年
3 周文濤;電子封裝高硅鋁合金電火花成型加工工藝研究[D];哈爾濱工業(yè)大學(xué);2014年
4 令狐儀全;噴射成形高硅鋁合金缸套鑲鑄行為研究[D];哈爾濱工業(yè)大學(xué);2014年
5 于雷;Al-50%Si電子封裝合金的致密化及性能[D];哈爾濱工業(yè)大學(xué);2013年
6 張恒;5052鋁合金激光焊接焊縫及其氣孔研究[D];湖南大學(xué);2013年
7 馬曉紅;鋁硅合金的激光焊接[D];吉林大學(xué);2012年
8 姜華海;基于復(fù)合工藝制備的高硅鋁合金組織與性能的研究[D];合肥工業(yè)大學(xué);2012年
9 鄭文健;鋁合金T型接頭雙束激光雙側(cè)同步焊接的數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2011年
10 葉建海;微波器件質(zhì)量相關(guān)的電子顯微研究[D];電子科技大學(xué);2011年
,本文編號(hào):1978504
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1978504.html