CFRP制孔旋刨刀具的優(yōu)化研究
本文選題:CFRP + 旋刨刀 ; 參考:《天津工業(yè)大學(xué)》2017年碩士論文
【摘要】:CFRP具有優(yōu)異的力學(xué)性能,被廣泛的應(yīng)用在各個(gè)領(lǐng)域。然而,由于材料的各向異性、硬度高、導(dǎo)熱性差等特點(diǎn),在CFRP鉆孔加工的過(guò)程中容易造成CFRP分層、孔出入口的撕裂和毛刺、刀具壽命降低等缺陷。針對(duì)以上問(wèn)題,本文進(jìn)行了以下四個(gè)方面的研究:首先,對(duì)CFRP的切削機(jī)理與缺陷進(jìn)行研究,對(duì)單層CFRP板和鉆孔后孔壁的微觀形態(tài)進(jìn)行觀察和分析,可以得出:不同的θ角下加工CFRP形成切屑的形式不同;碳纖維斷口和樹(shù)脂基體涂附表面兩部分組成了 CFRP的孔壁微表面;在0°~360°的范圍內(nèi),表面的粗糙度呈對(duì)稱分布。根據(jù)CFRP旋刨制孔時(shí)的受力模型得到切削力的理論公式,得出刀具的軸向力Fz的大小受到θ角、刀具的加工參數(shù)和幾何參數(shù)的影響,對(duì)旋刨刀的優(yōu)化設(shè)計(jì)做理論支撐。然后,對(duì)CFRP旋刨刀的可行性進(jìn)行了實(shí)驗(yàn)驗(yàn)證,在不同的進(jìn)給速度vf和轉(zhuǎn)速n下對(duì)旋刨刀、麻花鉆、套料鉆進(jìn)行鉆削實(shí)驗(yàn),對(duì)比分析得到三種刀具的軸向力Fz的大小,并用MATLAB進(jìn)行數(shù)據(jù)擬合,得到三種刀具Fz的二元二次經(jīng)驗(yàn)公式。分析可以得到:在n一定時(shí),Fz隨著vf的增大而增大,兩者變化趨勢(shì)幾乎成線性關(guān)系;在vf一定時(shí),Fz隨著n的增大而減小,且vf越小,這種變化越明顯;三種刀具在n = 5000r/min和vf = 150mm/min時(shí),Fz旋刨刀Fz套料鉆Fz麻花鉆'即旋刨刀的軸向力最小,加工質(zhì)量也最好,從而驗(yàn)證了旋刨刀的可行性。其次,對(duì)旋刨刀的結(jié)構(gòu)進(jìn)行設(shè)計(jì),基于HASHIN準(zhǔn)則,利用ABAQUS模擬CFRP三維鉆削,通過(guò)改變刀具的幾何參數(shù),得到一個(gè)優(yōu)化的值后,然后進(jìn)行鉆削正交試驗(yàn),通過(guò)測(cè)量軸向力Fz和CFRP出入口的加工質(zhì)量來(lái)判斷比較,從而得出刀具幾何角度最優(yōu)組合為前角γ0= 15°后角α0= 10°主偏角kr = 75°副偏角kr=5°。按照對(duì)Fz的影響程度依次為:主偏角前角副偏角后角。和仿真結(jié)果一致,誤差在可以接受的范圍之內(nèi)。用MATLAB擬合平均撕裂長(zhǎng)度L(?)關(guān)于Fz的一元一次的曲線和表達(dá)式,表明兩者呈正相關(guān)的關(guān)系。最后,采用超聲C掃描對(duì)CFRP的分層缺陷進(jìn)行分析,得出分層因子和Fz呈正相關(guān);同時(shí)對(duì)優(yōu)化后幾何角度的旋刨刀進(jìn)行刀具磨損實(shí)驗(yàn),分析得出VB值和Fz的大小幾乎呈線性的關(guān)系,因此可以用Fz來(lái)預(yù)測(cè)分層缺陷的程度和刀具的大致的磨損程度。旋刨刀的失效形式主要是后刀面的磨粒磨損以及刀具的崩刃失效。
[Abstract]:CFRP has excellent mechanical properties and has been widely used in various fields. However, due to the anisotropy, high hardness and poor thermal conductivity of the material, it is easy to lead to CFRP delamination, hole entrance tear and burr, and tool life reduction in the process of CFRP drilling. Aiming at the above problems, the following four aspects are studied in this paper: firstly, the cutting mechanism and defects of CFRP are studied, and the microscopic morphology of single layer CFRP plate and hole wall after drilling are observed and analyzed. It can be concluded that the forms of chips formed by processing CFRP under different 胃 angles are different, the fracture surface of carbon fiber and the coating surface of resin matrix constitute the pore wall micro-surface of CFRP, and the roughness of the surface is symmetrical distributed in the range of 0 擄~ 360 擄. The theoretical formula of cutting force is obtained according to the force model of CFRP rotary planing, and the influence of 胃 angle, machining parameters and geometric parameters on the axial force FZ of the cutting tool is obtained. The theoretical support for the optimization design of the rotary planer is made. Then, the feasibility of CFRP rotary planer is verified by experiments. The axial force FZ of the three kinds of cutting tools is obtained by comparing and analyzing the axial force FZ of the three kinds of cutting tools under different feed speed vf and rotational speed n. The binary quadratic empirical formula of three kinds of tool FZ is obtained by using MATLAB to fit the data. It can be concluded that the FZ increases with the increase of vf at a certain time, and the trend of both increases almost linearly, and the FZ decreases with the increase of n at a certain vf, and the smaller the vf is, the more obvious the change is. When n = 5000r/min and vf = 150mm/min, the three kinds of cutting tools have the minimum axial force and the best machining quality, so the feasibility of the rotary planer is verified. Secondly, the structure of the rotary planer is designed. Based on the HASHIN criterion, ABAQUS is used to simulate CFRP 3D drilling. By changing the geometric parameters of the tool, an optimized value is obtained, and then the drilling orthogonal test is carried out. By measuring the machining quality of the axial force FZ and the entrance of CFRP, it is concluded that the optimum combination of the geometric angles of the cutting tools is that the front angle 緯 0 = 15 擄, the rear angle 偽 0 = 10 擄, the main deflection angle KR = 75 擄, the pair angle kr=5 擄. According to the degree of influence on FZ, the main angle is the front angle, the second angle is the rear angle. In accordance with the simulation results, the error is within acceptable range. Fitting the mean tear length by MATLAB) The univariate curve and the expression of F _ z show a positive correlation between them. Finally, ultrasonic C-scan is used to analyze the delamination defects of CFRP, and the delamination factor is found to be positively correlated with FZ. At the same time, the tool wear experiments are carried out on the rotary planer with optimized geometric angle. It is concluded that there is a linear relationship between VB value and FZ value, so FZ can be used to predict the degree of delamination defects and the approximate wear degree of cutting tools. The failure form of the rotary plane cutter is mainly the abrasive wear of the rear tool surface and the failure of the cutting tool.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG716
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏瑩瑩;安慶龍;蔡曉江;陳明;;碳纖維復(fù)合材料超聲掃描分層檢測(cè)及評(píng)價(jià)方法[J];航空學(xué)報(bào);2016年11期
2 孫忠海;翟南;郭志濤;;碳纖維增強(qiáng)復(fù)合材料鉆孔加工中刀具磨損試驗(yàn)研究[J];航空制造技術(shù);2015年19期
3 林盛坤;林有希;林華;;碳纖維復(fù)合材料的鉆削研究進(jìn)展[J];工具技術(shù);2015年05期
4 陳燕;葛恩德;傅玉燦;蘇宏華;徐九華;;碳纖維增強(qiáng)樹(shù)脂基復(fù)合材料制孔技術(shù)研究現(xiàn)狀與展望[J];復(fù)合材料學(xué)報(bào);2015年02期
5 周正干;孫廣開(kāi);陳秀成;王捷;;復(fù)合材料緊固孔分層激光超聲量化表征試驗(yàn)[J];航空學(xué)報(bào);2014年08期
6 張碩;胡永祥;姚振強(qiáng);;碳纖維復(fù)合材料螺旋銑孔出口缺陷試驗(yàn)研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年06期
7 溫泉;郭東明;高航;王奔;;基于劃痕試驗(yàn)的碳纖維/環(huán)氧樹(shù)脂復(fù)合材料制孔毛刺與撕裂缺陷形成機(jī)制[J];復(fù)合材料學(xué)報(bào);2014年01期
8 鮑永杰;高航;李鳳全;;電鍍金剛石鉆頭鉆削碳纖維復(fù)合材料研究[J];金剛石與磨料磨具工程;2009年03期
9 張厚江,陳五一,陳鼎昌;碳纖維復(fù)合材料鉆孔分層的滲透檢測(cè)[J];航空制造技術(shù);2004年12期
10 李志強(qiáng),樊銳,陳五一,陳鼎昌;纖維增強(qiáng)復(fù)合材料的機(jī)械加工技術(shù)[J];航空制造技術(shù);2003年12期
,本文編號(hào):1971294
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1971294.html