車削1Cr18Ni9Ti粘焊變質(zhì)層特性研究
本文選題:1Cr18Ni9Ti + 車削; 參考:《哈爾濱理工大學(xué)》2017年碩士論文
【摘要】:奧氏體不銹鋼1Cr18Ni9Ti應(yīng)用廣泛,但其加工硬化明顯,切削加工性能較差,為滿足不同工況下不同的加工,需要人們對此有新的探討。本文針對加工不銹鋼材料這種相對較“粘”材料出現(xiàn)的刀-屑粘焊現(xiàn)象進行研究,深入分析硬質(zhì)合金刀具切削奧氏體不銹鋼1Cr18Ni9Ti刀-屑粘焊現(xiàn)象明顯這一問題。憑借數(shù)值模擬及試驗等技術(shù)手段獲得粘焊的熱力特性、刀-屑粘焊產(chǎn)生基礎(chǔ)和演化以及粘焊變質(zhì)層對加工工況的作用規(guī)律,為后續(xù)的粘焊變質(zhì)層形成機理以及損傷演化提供理論試驗基礎(chǔ),對進一步提高刀具的加工精度以及使用壽命,增加刀具的抗粘焊能力具有深厚的現(xiàn)實意義。首先,采用數(shù)值仿真軟件Deform-3D建立切削模型并細化主要分析區(qū)域,實現(xiàn)硬質(zhì)合金刀具對奧氏體不銹鋼1Cr18Ni9Ti的車削模擬,獲得前刀面刀-屑接觸區(qū)域的溫度場規(guī)律、切屑形態(tài)以及刀具磨損狀態(tài),確定刀-屑粘焊不同于一般刀具失效形式,為后續(xù)研究刀具粘焊變質(zhì)層提供理論基礎(chǔ)。其次,進行1Cr18Ni9Ti的車削試驗,提取車削力范圍,并通過超景深顯微鏡觀測粘焊變質(zhì)層的位置及大小,應(yīng)用ANSYS Workbench模擬刀具前刀面粘焊變質(zhì)層加載過程,獲得刀-屑粘焊區(qū)域的應(yīng)力分布特性,確定不同粘焊狀態(tài)對前刀面的作用規(guī)律。再次,利用熱成像儀采集前刀面刀-屑粘焊區(qū)域切削溫度,依據(jù)曲面響應(yīng)法采用Design-expert建立刀-屑粘焊區(qū)域的映射模型,并對模型的可靠性進行驗證,獲得不同參數(shù)交互作用下切削溫度變化趨勢以及粘焊狀態(tài),借助MATLAB對該二階響應(yīng)模型進行最優(yōu)化求解,對實際加工中的切削參數(shù)選取進行補充分析。最后,通過試驗及仿真綜合分析獲得粘焊變質(zhì)層演化規(guī)律,確定其出現(xiàn)及穩(wěn)定的材料屬性以及熱、力條件基礎(chǔ)。分析刀具表面裂紋的擴展及匯集過程,揭示表面裂紋和刀-屑粘焊的相互作用規(guī)律。
[Abstract]:Austenitic stainless steel (1Cr18Ni9Ti) is widely used, but its working-hardening is obvious, and its cutting performance is poor. In order to meet the different working conditions, it needs to be discussed. In this paper, the phenomenon of cutter chip bonding in machining stainless steel material is studied, and the obvious phenomenon of cutting austenitic stainless steel 1Cr18Ni9Ti tool and chip bonding with cemented carbide tool is analyzed. By means of numerical simulation and test, the thermal characteristics of bonding, the foundation and evolution of tool chip bonding, and the effect of the modified layer on the working conditions are obtained. It provides a theoretical experimental basis for the formation mechanism and damage evolution of the modified layer in subsequent bonding welding. It is of great practical significance to further improve the machining accuracy and service life of the tool and to increase the ability of the tool to resist bonding and welding. Firstly, the numerical simulation software Deform-3D is used to set up the cutting model and refine the main analysis area, to realize the turning simulation of austenitic stainless steel 1Cr18Ni9Ti with cemented carbide tools, and to obtain the temperature field law of the front tool face cutter chip contact region. Chip shape and tool wear state determine that the tool chip bonding is different from common tool failure, which provides a theoretical basis for further study on the modified layer of tool adhesion welding. Secondly, the turning test of 1Cr18Ni9Ti was carried out, the turning force range was extracted, and the position and size of the modified layer were observed by the depth of field microscope, and the loading process of the modified layer was simulated by ANSYS Workbench. The stress distribution characteristics of the tool-chip bonding area are obtained and the action law of different bonding states on the front tool face is determined. Thirdly, using thermal imager to collect the cutting temperature of the front tool face cutter and chip bonding welding area, according to the surface response method, the mapping model of the tool chip bonding welding area is established by using Design-expert, and the reliability of the model is verified. The changing trend of cutting temperature and bonding state under the interaction of different parameters are obtained. The second-order response model is solved optimally by MATLAB, and the selection of cutting parameters in actual machining is analyzed. Finally, the evolution law of the modified layer is obtained by means of test and simulation, and the appearance and stability of the modified layer are determined, as well as the basis of the thermal and force conditions. The process of surface crack propagation and collection is analyzed, and the interaction between surface crack and cutter chip bonding is revealed.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG51
【相似文獻】
相關(guān)期刊論文 前10條
1 李建明;靳九成;李學(xué)謙;夏宗禹;;大型鐵路軸承表面變質(zhì)層研究[J];湖南大學(xué)學(xué)報;1989年03期
2 郭濤;王篤誠;;關(guān)于電火花線切割變質(zhì)層的研究[J];電子工藝技術(shù);1991年02期
3 仰書介;磨削變質(zhì)層狀態(tài)在線監(jiān)視儀[J];軸承;1992年03期
4 李崇豪,,趙向東;陶瓷材料電加工后變質(zhì)層厚度的研究[J];江蘇理工大學(xué)學(xué)報;1996年04期
5 馬伏波;陳樹峰;;已加工表面變質(zhì)層的研究[J];煤礦機械;2013年06期
6 殷玲,劉忠,陳日曜;大理石拋光表面變質(zhì)層的研究[J];磨料磨具與磨削;1993年02期
7 田欣利,徐燕申,彭澤民,林彬;陶瓷磨削表面變質(zhì)層的產(chǎn)生機理[J];機械工程學(xué)報;2000年11期
8 田欣利,林允森,張紓,時小軍;高溫結(jié)構(gòu)陶瓷精密磨削塑性變質(zhì)層的物理模型[J];裝甲兵工程學(xué)院學(xué)報;2002年01期
9 林述溫,曹瑞濤,莫開旺;軸承溝道磨削變質(zhì)層與磨削工藝參數(shù)關(guān)系的研究[J];機械工藝師;1997年01期
10 林述溫,莫開旺;軸承溝道磨削工藝參數(shù)對磨削變質(zhì)層的影響規(guī)律[J];磨床與磨削;1997年01期
相關(guān)會議論文 前2條
1 鄭富強;鄒丹;臧海天;;硬質(zhì)合金線切割加工變質(zhì)層的形成及對材料性能的影響[A];2009全國粉末冶金學(xué)術(shù)會議論文集[C];2009年
2 張小亮;王兆希;施惠基;;電火花成型對試樣表面微觀力學(xué)性能的影響[A];第16屆全國疲勞與斷裂學(xué)術(shù)會議會議程序冊[C];2012年
相關(guān)碩士學(xué)位論文 前7條
1 何俊生;鈦合金薄壁窄槽電加工試驗研究[D];南京航空航天大學(xué);2016年
2 宋良杰;電火花線切割工藝參數(shù)對高碳馬氏體不銹鋼變質(zhì)層的影響[D];上海交通大學(xué);2015年
3 王婷;超高強度鋼磨削表面變質(zhì)層研究[D];西北工業(yè)大學(xué);2015年
4 秦泗偉;高速干硬切削表面變質(zhì)層動態(tài)再結(jié)晶的有限元—元胞自動機耦合模擬與預(yù)測[D];大連理工大學(xué);2016年
5 馮景洋;車削1Cr18Ni9Ti粘焊變質(zhì)層特性研究[D];哈爾濱理工大學(xué);2017年
6 楊永衡;淬硬模具鋼已加工表面變質(zhì)層的研究[D];哈爾濱理工大學(xué);2015年
7 王靜;Cr12MoV線切割電參數(shù)優(yōu)化及變質(zhì)層研究[D];華中科技大學(xué);2012年
本文編號:1970797
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1970797.html