304不銹鋼帶筋管充液壓形成形規(guī)律研究
發(fā)布時(shí)間:2018-05-31 04:22
本文選題:帶筋管 + 充液壓形 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)技術(shù)的進(jìn)步和制造行業(yè)的高速發(fā)展,航空航天、武器裝備等領(lǐng)域迫切需要通過減輕結(jié)構(gòu)質(zhì)量來實(shí)現(xiàn)輕量化,而輕量化對(duì)于節(jié)約能源、環(huán)境保護(hù)、提高機(jī)動(dòng)性能等方面發(fā)揮著不可替代的作用。其中帶環(huán)向加強(qiáng)筋的薄壁筒形件是一種比較常用的輕量化結(jié)構(gòu)構(gòu)件。但是由于其封閉截面形式、壁厚薄、截面復(fù)雜、尺寸大等要求帶來一系列難題。目前的成形工藝都不能很好的解決這些問題,特別是對(duì)于整體成形。本文提出了一種新的成形工藝,將充液壓形技術(shù)應(yīng)用到成形帶筋管中,實(shí)現(xiàn)了帶筋管的整體成形。主要通過數(shù)值模擬結(jié)合實(shí)驗(yàn)對(duì)帶筋管的成形規(guī)律進(jìn)行研究,并對(duì)在成形過程中產(chǎn)生的缺陷和不足等進(jìn)行力學(xué)分析。本文證實(shí)了帶筋管應(yīng)用充液壓形技術(shù)整體成形的可行性。帶筋管變形的實(shí)質(zhì)是曲率的變化,這里設(shè)計(jì)了三種截面形狀包括橢圓截面、半橢圓截面和矩形截面,通過數(shù)值模擬結(jié)合實(shí)驗(yàn)的方法,證明了帶筋管應(yīng)用充液壓形技術(shù)成形的可行性。而且對(duì)三種截面形狀的任意組合,也進(jìn)一步證明了充液壓形技術(shù)可以成形出復(fù)雜截面形狀的制件。分析了帶筋管在充液壓形過程中的內(nèi)壓加載范圍和內(nèi)壓加載方式。恒壓加載路徑下,充液壓形件的材料填充性好、壁厚分布不均勻,應(yīng)力波動(dòng)大;線性加載路徑下,充液壓形件的材料填充性不好、壁厚分布均勻,應(yīng)力波動(dòng)小。根據(jù)大型薄壁帶筋構(gòu)件的需求選擇線性加載方式。對(duì)帶筋管在成形過程中產(chǎn)生的缺陷進(jìn)行探討分析。失穩(wěn)主要分為三種類型:筋板傾倒、筋板失穩(wěn)起皺以及薄壁管(無筋處)塌陷。傾倒主要發(fā)生在曲率增大處,失穩(wěn)主要發(fā)生在曲率減小處,而塌陷主要發(fā)生在曲率為零的直壁段。對(duì)三種缺陷分別進(jìn)行受力分析,失穩(wěn)起皺和薄壁管塌陷的產(chǎn)生主要是因?yàn)楫?dāng)變形達(dá)到一定的變形量時(shí),筋板或者薄壁管所受的環(huán)向應(yīng)力大于其臨界失穩(wěn)應(yīng)力,就會(huì)發(fā)生失穩(wěn)缺陷。傾倒缺陷產(chǎn)生的原因主要是圓角處上下筋板所受的環(huán)向應(yīng)力不均勻,進(jìn)而產(chǎn)生了彎矩,當(dāng)彎矩增加到一定程度會(huì)發(fā)生失穩(wěn)傾倒的現(xiàn)象。對(duì)帶筋管充液壓形工藝中產(chǎn)生變形不協(xié)調(diào)現(xiàn)象進(jìn)行理論分析。得出結(jié)論:成形件的筋板最外側(cè)壁厚在直壁段增厚,圓角處減薄;筋板最內(nèi)側(cè)壁厚在直壁段減薄,圓角處增厚。薄壁管壁厚不發(fā)生變化。導(dǎo)致圓角處筋板內(nèi)側(cè)周長(zhǎng)小于薄壁管處周長(zhǎng),產(chǎn)生“收腰”現(xiàn)象。模擬和理論分析得到的結(jié)論基本一致。分析了高厚比、摩擦系數(shù)、內(nèi)壓和回彈等對(duì)帶筋管成形極限的影響。當(dāng)高厚比的范圍為0"fh/t㩳6時(shí),可以成形。由于摩擦力的作用,上圓角大于下圓角填充速度。摩擦系數(shù)越大,壁厚差越大,成形極限下降。有內(nèi)壓的加載明顯提高帶筋管的成形極限;貜棇(duì)帶筋管成形極限影響很小,可以近似忽略。
[Abstract]:With the progress of science and technology and the rapid development of manufacturing industry, aerospace, weaponry and other fields urgently need to reduce the quality of structure to achieve lightweight, and lightweight for energy conservation, environmental protection, Improving maneuverability plays an irreplaceable role. The thin-walled cylindrical part with circumferential stiffener is a kind of light-weight structural member in common use. However, due to its closed section form, thin wall, complex section and large size, it brings a series of difficulties. The current forming process can not solve these problems well, especially for the whole forming. In this paper, a new forming technology is proposed, which is applied to the forming of stiffened tube, and the integral forming of the stiffened tube is realized. In this paper, the forming law of the stiffened tube is studied by numerical simulation and experiment, and the defects and defects in the forming process are analyzed. In this paper, the feasibility of integral forming of stiffened pipe by hydraulic filling technique is confirmed. The essence of the deformation of stiffened tube is the change of curvature. In this paper, three kinds of cross-section including elliptical section, semi-elliptical section and rectangular section are designed, and the numerical simulation is combined with the experimental method. It is proved that it is feasible to apply hydraulic forming technology to the stiffened pipe. For any combination of three cross section shapes, it is further proved that hydraulic filling technology can form parts with complex cross section shapes. The internal pressure loading range and internal pressure loading mode of the stiffened pipe in the process of hydraulic filling are analyzed. Under the constant pressure loading path, the filling property of the hydraulic filling parts is good, the wall thickness distribution is uneven, and the stress fluctuation is large; under the linear loading path, the filling property of the hydraulic filling parts is poor, the wall thickness distribution is uniform, and the stress fluctuation is small. According to the needs of large thin-walled stiffened members, the linear loading mode is chosen. The defects in the forming process of the stiffened tube are discussed and analyzed. Instability can be divided into three types: toppling, wrinkling and collapse of thin-walled tubes. The toppling occurs mainly at the increase of curvature, the instability occurs at the point where the curvature decreases, and the collapse occurs in the straight wall with zero curvature. The stress analysis of three kinds of defects shows that the buckling and collapse of thin-walled tubes are mainly due to the fact that the circumferential stress of the stiffened plate or thin-walled tube is greater than the critical instability stress when the deformation reaches a certain deformation. There will be instability defects. The main reason for the toppling defect is that the toroidal stress of the upper and lower stiffened plates at the corner is not uniform and then the bending moment is produced. When the bending moment is increased to a certain extent the instability and toppling will occur. In this paper, the phenomenon of deformation disharmony in the hydraulic filling process of stiffened pipe is analyzed theoretically. It is concluded that the outermost wall thickness of the stiffened plate is thickened at the straight wall and the thickness of the innermost wall is thinned in the straight section and the corner is thickened at the corner. The wall thickness of thin wall pipe does not change. The inner circumference of the stiffened plate is smaller than the circumference of the thin-walled tube at the round corner, which leads to the phenomenon of "waistline". The results obtained by simulation and theoretical analysis are basically consistent. The effects of thickness ratio, friction coefficient, internal pressure and springback on the forming limit of stiffened tube are analyzed. When the ratio of height to thickness is in the range of 0 "FH / t? 6, it can be formed." Due to the effect of friction, the filling speed of the upper corner is greater than that of the lower corner. The greater the friction coefficient, the greater the wall thickness difference and the lower the forming limit. The forming limit of stiffened tube is obviously increased by loading with internal pressure. The springback has little effect on the forming limit of the stiffened tube and can be neglected approximately.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG394
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦國(guó)有;王天壽;;封閉零件壓形模[J];鍛壓技術(shù);1992年03期
2 蒿荷蓮;;小角度錐形件壓形模的設(shè)計(jì)[J];金屬加工(冷加工);2011年22期
3 向小漢;;淺談商用車縱梁壓形模開發(fā)[J];南寧職業(yè)技術(shù)學(xué)院學(xué)報(bào);2012年06期
4 陳予生;大型簡(jiǎn)單的楔傳動(dòng)壓形模[J];模具通訊;1982年02期
5 王盛云;管裝配壓形模[J];模具工業(yè);1989年05期
6 黃菊生;;接鐵壓形模開裂原因分析及設(shè)計(jì)改進(jìn)[J];粉末冶金技術(shù);1990年01期
7 洪佩景;可調(diào)式汽車縱梁壓形模[J];機(jī)械工人(熱加工);1992年08期
8 焦國(guó)有,王天壽;封閉零件的壓形模[J];模具工業(yè);1992年03期
9 劉崇仁;;鐵馬汽車雙層縱梁壓形模設(shè)計(jì)[J];金屬成形工藝;1995年04期
10 宋淑芳;;螺旋形葉片焊接結(jié)構(gòu)壓形模的設(shè)計(jì)[J];新技術(shù)新工藝;2005年12期
,本文編號(hào):1958267
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1958267.html
最近更新
教材專著