仿生超疏水表面的制備及其海水腐蝕防護(hù)性能研究
本文選題:海洋環(huán)境腐蝕 + 仿生超疏水表面; 參考:《中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院海洋研究所)》2017年碩士論文
【摘要】:海洋環(huán)境腐蝕極大的制約著人類開發(fā)利用海洋資源的步伐,腐蝕不但帶來(lái)了巨大的經(jīng)濟(jì)損失,還會(huì)引起突發(fā)性的災(zāi)難,帶來(lái)慘重的人員傷亡。近年來(lái),通過改變金屬材料表面的潤(rùn)濕性來(lái)提高其腐蝕防護(hù)性能引起了研究人員的廣泛興趣。本研究通過水熱法、低溫浸泡法、陽(yáng)極氧化法和電化學(xué)沉積法在金屬鋅/銅表面構(gòu)建了不同微觀結(jié)構(gòu)的超疏水表面,研究了不同反應(yīng)條件對(duì)微/納米粗糙表面潤(rùn)濕性的影響規(guī)律;在表面分析的基礎(chǔ)上,基于Cassie理論模型分析了固 液 氣復(fù)合表面的潤(rùn)濕性;最后評(píng)價(jià)了仿生超疏水表面在模擬海水中的腐蝕防護(hù)性能,揭示了仿生超疏水表面在海水環(huán)境中的腐蝕防護(hù)機(jī)制。結(jié)果如下:(1)采用水熱—表面修飾兩步法在金屬鋅表面制備了正六邊形棒狀陣列結(jié)構(gòu)的超疏水表面,其接觸角為162.6±3°。優(yōu)化了制備棒狀陣列結(jié)構(gòu)的反應(yīng)條件,通過X射線衍射(XRD)和X射線光電子能譜(XPS)分析了超疏水膜的化學(xué)成分,提出了ZnO的形成機(jī)制;利用Cassie公式計(jì)算出固 液接觸面積占復(fù)合表面的8.88%;極化曲線測(cè)試結(jié)果證實(shí):ZnO超疏水表面具有優(yōu)異的腐蝕防護(hù)性能,可以有效的保護(hù)金屬鋅不被腐蝕,原因是ZnO棒狀陣列縫隙中截留的空氣層有效的將腐蝕性介質(zhì)和金屬基底隔離開。(2)通過低溫浸泡—表面修飾兩步法在金屬鋅基底上制備了排列規(guī)則的納米針錐結(jié)構(gòu)的超疏水表面,其接觸角為169.4±3°。探索了不同反應(yīng)條件對(duì)試樣表面潤(rùn)濕性的影響規(guī)律,通過XRD和XPS分析了超疏水膜的化學(xué)成分,通過Cassie公式計(jì)算得到固 液接觸面積在復(fù)合表面中僅占3.31%;利用極化曲線評(píng)價(jià)了Zn(OH)_2超疏水表面的腐蝕防護(hù)性能,揭示了Zn(OH)_2超疏水表面在海水環(huán)境中的腐蝕防護(hù)機(jī)制。(3)以金屬銅作為基底材料,通過陽(yáng)極氧化—表面修飾兩步法制備了尖銳針狀結(jié)構(gòu)的Cu(OH)_2超疏水表面,其接觸角為162.7±3°。研究了陽(yáng)極氧化反應(yīng)中不同制備條件對(duì)試樣表面潤(rùn)濕性的影響規(guī)律,在表面分析的基礎(chǔ)上,利用Cassie公式計(jì)算出固 液接觸面積在復(fù)合表面中僅占8.78%;電化學(xué)測(cè)試結(jié)果表明:Cu(OH)_2超疏水表面具有良好的腐蝕防護(hù)性能,揭示了Cu(OH)_2超疏水表面在海水環(huán)境中的腐蝕防護(hù)機(jī)制。(4)以金屬銅作為基底材料,通過電化學(xué)沉積—表面修飾兩步法制備了“金字塔”形納米針錐結(jié)構(gòu)的鎳層超疏水表面,其接觸角為168.5±3°。研究了電化學(xué)沉積過程中納米針錐的生長(zhǎng)機(jī)理及表面形貌與潤(rùn)濕性之間的關(guān)系,通過XRD和XPS分析了超疏水膜的化學(xué)成分,Cassie理論模型計(jì)算出固 液的接觸面積僅占復(fù)合表面的3.90%;極化曲線表明:鎳層超疏水表面具有優(yōu)異的腐蝕防護(hù)性能,這種防護(hù)能力歸因于超疏水表面的鍍鎳層、含氟硅烷自組裝膜和納米針錐空隙中截留的空氣層三者共同作用,且納米針錐縫隙中截留的空氣層起主要作用。
[Abstract]:The corrosion of marine environment greatly restricts the pace of human exploitation and utilization of marine resources. Corrosion not only brings huge economic losses, but also causes sudden disasters and brings heavy casualties. In recent years, the improvement of corrosion protection performance by changing the wettability of metal surface has attracted extensive interest of researchers. Superhydrophobic surfaces with different microstructure were constructed on zinc / copper surfaces by hydrothermal method, low temperature immersion method, anodic oxidation method and electrochemical deposition method. The effect of different reaction conditions on the wettability of micro / nano rough surface was studied, and the wettability of solid liquid / gas composite surface was analyzed on the basis of surface analysis and Cassie model. Finally, the corrosion protection performance of bionic superhydrophobic surface in simulated seawater was evaluated, and the corrosion protection mechanism of bionic superhydrophobic surface in seawater environment was revealed. The results are as follows: (1) the hyperhydrophobic surface of hexagonal rod-like arrays was prepared on the surface of zinc by hydrothermal and surface modification with a contact angle of 162.6 鹵3 擄. The reaction conditions for preparing rod arrays were optimized. The chemical composition of superhydrophobic films was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the formation mechanism of ZnO was proposed. By using Cassie formula, the contact area of solid solution is calculated to account for 8.88% of the composite surface. The results of polarization curve test show that the superhydrophobic surface of the superhydrophobic surface has excellent corrosion protection performance and can effectively protect metal zinc from corrosion. The reason is that the air layer trapped in the gap of ZnO rod array can effectively isolate corrosive medium from metal substrate. (2) the regular superhydrophobic surface of nano-needle cone structure was prepared on zinc substrate by two steps of low temperature soaking and surface modification. The contact angle was 169.4 鹵3 擄. The influence of different reaction conditions on the surface wettability of the sample was investigated. The chemical composition of the superhydrophobic film was analyzed by XRD and XPS. The contact area of solid solution is only 3.31% of the composite surface calculated by Cassie formula, and the corrosion protection performance of Zn(OH)_2 superhydrophobic surface is evaluated by polarization curve. The corrosion protection mechanism of Zn(OH)_2 superhydrophobic surface in seawater environment was revealed. The surface of Cu(OH)_2 with acutely acicular structure was prepared by anodic oxidation and surface modification with a contact angle of 162.7 鹵3 擄. The influence of different preparation conditions on the wettability of the sample surface in anodic oxidation reaction was studied. By using Cassie formula, the contact area of solid solution is only 8.78% of the composite surface, and the electrochemical test results show that the superhydrophobic surface of the superhydrophobic surface has good corrosion protection performance. The corrosion protection mechanism of Cu(OH)_2 superhydrophobic surface in seawater environment was revealed. The superhydrophobic nickel layer was prepared by electrochemical deposition and surface modification with copper metal as substrate. The contact angle was 168.5 鹵3 擄. The growth mechanism of nano-needle cone and the relationship between surface morphology and wettability during electrochemical deposition were studied. The chemical composition of the superhydrophobic film was analyzed by XRD and XPS. The contact area of the solid solution was only 3.90% of the composite surface, and the polarization curve showed that the superhydrophobic surface of the nickel layer had excellent corrosion protection. The protective ability is attributed to the nickel plating layer on the superhydrophobic surface, the interaction of fluorinated silane self-assembled film and the air layer intercepted in the nanoscale cone gap, and the main role of the retained air layer in the nano-needle cone gap.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院海洋研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 葉春波;;中國(guó)腐蝕成本驚人 一年超過2萬(wàn)億元[J];石油化工腐蝕與防護(hù);2016年06期
2 侯保榮;;海洋鋼結(jié)構(gòu)浪花飛濺區(qū)腐蝕防護(hù)技術(shù)[J];中國(guó)材料進(jìn)展;2014年01期
3 馮立超;賀毅強(qiáng);喬斌;于雪梅;;金屬及合金在海洋環(huán)境中的腐蝕與防護(hù)[J];熱加工工藝;2013年24期
4 任彥忠;王利民;;海上風(fēng)電塔筒防腐系統(tǒng)的選擇與運(yùn)用[J];風(fēng)能;2012年04期
5 周常蓉;朱衛(wèi)華;;海洋環(huán)境下鋼結(jié)構(gòu)的腐蝕機(jī)理[J];科協(xié)論壇(下半月);2008年09期
6 侯保榮;海洋環(huán)境腐蝕規(guī)律及控制技術(shù)[J];科學(xué)與管理;2004年05期
相關(guān)博士學(xué)位論文 前1條
1 張泓筠;超疏水表面微結(jié)構(gòu)對(duì)其疏水性能的影響及應(yīng)用[D];湘潭大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 趙明星;Fe-Al金屬間化合物的制備及其耐海洋環(huán)境腐蝕性能的研究[D];中國(guó)海洋大學(xué);2007年
,本文編號(hào):1951079
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1951079.html