鋁鋰合金表面氧化膜的制備及性能研究
本文選題:2060-T8鋁鋰合金 + 陽極氧化; 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:作為滿足航空航天領(lǐng)域結(jié)構(gòu)輕量化要求的最理想材料之一,鋁鋰合金具有較低的各項異性、高強可焊性及抗疲勞裂紋等優(yōu)點,廣泛應(yīng)用于商用、民用飛機或直升機的蒙皮、機身框架、襟翼翼肋、水平安定面、尾翼安定面、艙門、進氣道唇口、燃油箱上,提高鋁鋰合金表面性能的研究具有重要意義。本文研究了2060-T8鋁鋰合金在硫酸電解液中的陽極氧化行為和在硅酸鹽電解液中的微弧氧化行為。首先,分析了直流穩(wěn)壓條件下電壓、時間、電解液濃度等參數(shù)對鋁鋰合金陽極氧化膜表面微觀特性、粘結(jié)性能及摩擦磨損性能的影響。其次,分析了脈沖電流條件下,正脈沖電壓、時間、占空比、脈沖頻率等對微弧氧化膜表面微觀特性、粘結(jié)性能及摩擦磨損性能的影響。在硫酸電解液中鋁鋰合金進行恒壓陽極氧化,制得的氧化膜表面呈銀灰色,與鋁鋰合金基體沒有明顯變化。經(jīng)過SEM和EDS分析,鋁鋰合金陽極氧化膜表面含有微量孔洞和胞狀突起,表面較為平整,膜層主要元素成分為Al、C、O、S等,其中O和S主要來源于硫酸電解液。在硅酸鹽電解液中對鋁鋰合金進行單脈沖微弧氧化,制得的氧化膜表面呈紅棕色,氧化膜越厚顏色越深。經(jīng)過SEM和EDS分析,鋁鋰合金微弧氧化膜表面含有大量孔洞和菜花狀突起,表面起伏不平,膜層主要元素成分為Al、C、O、Si、Na等,其中O、Si和Na主要來源于硅酸鹽電解液。拉剪試驗表明,鋁鋰合金陽極氧化膜的粘結(jié)性能總體低于微弧氧化膜的粘結(jié)性能,但兩者均高于基體合金的粘結(jié)性能。陽極氧化過程中,電解液硫酸濃度10%時制得的鋁鋰合金試樣粘結(jié)強度最高,可達23.2MPa,較基體合金提高73%;微弧氧化過程中,氧化時間45min制得的鋁鋰合金試樣粘結(jié)強度最高,可達28.2MPa,較基體合金提高111%。摩擦磨損試驗表明,鋁鋰合金微弧氧化膜的摩擦磨損性能明顯高于陽極氧化膜,陽極氧化膜的摩擦磨損性能又高于基體合金。陽極氧化過程中,鋁鋰合金的摩擦磨損性能隨電壓的升高而先升后降,電壓為10V時制得的陽極氧化膜耐磨性能最好,較基體提高7.2倍。微弧氧化過程中,正脈沖電壓過高或過低均不利于合金耐磨性能的提高,正脈沖電壓為400V時制得的微弧氧化膜耐磨性能最好,較基體合金試樣提高20倍。
[Abstract]:As one of the most ideal materials to meet the requirements of lightweight structure in aerospace field, Al-Li alloy has the advantages of low heterogeneity, high strength solderability and fatigue crack resistance, and is widely used in commercial, civil aircraft or helicopter skin. It is of great significance to improve the surface properties of Al-Li alloy in fuselage frame, flaps, horizontal stabilizer, tail stabilizer, hatch, inlet lip and fuel tank. The anodizing behavior of 2060-T8 aluminum-lithium alloy in sulphuric acid electrolyte and micro-arc oxidation in silicate electrolyte have been studied in this paper. Firstly, the effects of voltage, time and electrolyte concentration on the surface microcosmic properties, bond properties and friction and wear properties of Al-Li alloy anodic oxide film were analyzed. Secondly, the effects of positive pulse voltage, time, duty cycle and pulse frequency on the surface properties, adhesion properties and friction and wear properties of micro-arc oxide films are analyzed. Aluminum-lithium alloy was anodized at constant voltage in sulphuric acid electrolyte. The surface of the film was silver gray and had no obvious change with the base of Al-Li alloy. By SEM and EDS analysis, the surface of the anodic oxide film of Al-Li alloy contains a small number of pores and cellular processes, and the surface is flat. The main elements of the film are Al _ 2O _ 4 / O _ S, among which O and S are mainly derived from sulphuric acid electrolyte. Aluminum-lithium alloy was oxidized by single pulse micro-arc in silicate electrolyte. The surface of the oxide film was red-brown, and the thicker the film was, the darker the color was. By SEM and EDS analysis, a large number of pores and cauliflower protrusions were found on the surface of Al-Li alloy micro-arc oxide film. The tensile and shear tests show that the bonding property of the anodic oxide film of Al-Li alloy is generally lower than that of the micro-arc oxide film, but both of them are higher than that of the base alloy. In the process of anodizing, the bonding strength of Al-Li alloy sample made from the electrolyte with sulfuric acid concentration 10 is the highest, up to 23.2MPa, which is 73% higher than that of the base alloy, and the bond strength of Al-Li alloy sample prepared by oxidation time 45min is the highest in the process of micro-arc oxidation. It can reach 28.2MPa, which increases 111% compared with the base alloy. The friction and wear tests show that the friction and wear properties of Al-Li alloy micro-arc oxide film are obviously higher than those of anodic oxide film, and the friction and wear properties of anodic oxide film are higher than that of base alloy. During anodic oxidation, the friction and wear properties of Al-Li alloy increased first and then decreased with the increase of voltage, and the wear resistance of the anodic oxide film was the best when the voltage was 10 V, which was 7.2 times higher than that of the substrate. In the process of micro-arc oxidation, the high or too low positive pulse voltage is not conducive to the improvement of the wear resistance of the alloy. When the positive pulse voltage is 400V, the wear resistance of the micro-arc oxide film is the best, which is 20 times higher than that of the base alloy sample.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG174.4
【參考文獻】
相關(guān)期刊論文 前10條
1 張興振;李小強;李東升;宋楠;孫中剛;;新型鋁鋰合金2060T8板材銑削試驗研究[J];航空制造技術(shù);2015年03期
2 安娜;張心怡;王啟明;楊武雄;肖榮詩;;2060鋁鋰合金光纖激光填絲焊接工藝研究[J];中國激光;2014年10期
3 祝萌;朱光明;徐博;;磷酸陽極化工藝對鋁合金膠接性能的影響[J];材料保護;2014年08期
4 薛志剛;程英亮;吳湘權(quán);吳有伍;李勁風(fēng);;2A97鋁鋰合金等離子電解氧化膜的制備和耐蝕性能[J];中國有色金屬學(xué)報;2013年07期
5 楊武雄;張心怡;肖榮詩;;2060-T8/2099-T83鋁鋰合金T型接頭雙光束激光焊接工藝[J];中國激光;2013年07期
6 劉昌發(fā);黃明輝;孫振起;;航空用Al-Li合金陽極氧化對粘接性能的影響[J];材料導(dǎo)報;2012年12期
7 李勁風(fēng);鄭子樵;陳永來;張緒虎;;鋁鋰合金及其在航天工業(yè)上的應(yīng)用[J];宇航材料工藝;2012年01期
8 鄧麗虹;魏曉偉;;鋁合金6061在低濃度硫酸中硬質(zhì)陽極氧化膜的生長方式[J];腐蝕與防護;2011年06期
9 周峗;宣天鵬;汪亮;張萬利;;鋁合金陽極氧化膜的封閉方法[J];電鍍與精飾;2011年04期
10 梁成浩;梁坤;黃乃寶;;高純鋁陽極氧化膜的電化學(xué)行為研究[J];材料科學(xué)與工藝;2011年01期
相關(guān)博士學(xué)位論文 前1條
1 趙旭輝;鋁陽極氧化膜的電化學(xué)阻抗特征研究[D];北京化工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 劉昌發(fā);Al-Li合金航空板材膠接工藝及接頭強度分析[D];中南大學(xué);2012年
,本文編號:1950339
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1950339.html