天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 鑄造論文 >

GCr15接觸疲勞亞表面損傷機制研究

發(fā)布時間:2018-05-29 01:12

  本文選題:GCr15軸承鋼 + 滾道接觸疲勞; 參考:《蘭州理工大學(xué)》2017年碩士論文


【摘要】:GCr15軸承鋼是一種廣泛應(yīng)用于制造軸承、齒輪等滾動零部件的高碳鉻鋼,通常情況下服役的軸承承受的是循環(huán)載荷,包括徑向壓縮應(yīng)力和周向摩擦力。在這種復(fù)雜工況下的軸承實際壽命往往低于設(shè)計壽命。雖然對軸承鋼的接觸疲勞性能研究已久,但是對其失效機制仍存在分歧。由于機械設(shè)備常常在高溫、高速、高載荷的條件下運行,因此接觸疲勞又成為眾多學(xué)者研究的熱點問題。本文用試驗?zāi)M軸承的工作環(huán)境,研究不同載荷和滾滑比下試樣接觸表面磨損形貌以及亞表面損傷機制,為追溯疲勞本源和延長軸承的服役壽命提供理論依據(jù)。本文以GCr15軸承鋼材料為試驗對象,采用MJP-20型滾動接觸疲勞試驗機進行線接觸滾動疲勞試驗,通過改變載荷、滾滑比等試驗參數(shù)研究材料接觸疲勞亞表面損傷機制。試驗前在同一熱處理狀態(tài)下獲得均勻的組織,對加工試樣材料的原始組織形貌以及成分含量進行了分析;試驗后利用光學(xué)顯微鏡(OM)和掃描電鏡(SEM)對接觸表面的磨損形貌、裂紋和亞表面組織形貌進行觀察,利用透射電鏡(TEM)觀察微區(qū)組織結(jié)構(gòu)變化,最后使用納米壓痕儀對白色蝕刻區(qū)(WEA)和附近基體材料的硬度進行測量對比。通過以上對接觸表面形貌、亞表面裂紋及微觀組織變化的分析。得到結(jié)論為:(1)GCr15軸承鋼試樣在不同的接觸壓力和滾滑比下表面磨損形貌存在很大區(qū)別,試驗表明載荷和滾滑比是影響表面磨損程度的共同因素。裂紋是導(dǎo)致軸承等工件剝落失效的直接原因。裂紋的不定向擴展會使材料產(chǎn)生多種失效模式,如點蝕、剝落和斷裂等。(2)滾動接觸疲勞是一個復(fù)雜的過程,在多個因素的影響下,疲勞裂紋的長大是連續(xù)或不連續(xù)擴展的一個過程,并且疲勞裂紋的擴展方向隨著工況的改變而改變。裂紋內(nèi)的磨屑是裂紋面相對運動及摩擦的結(jié)果。在裂紋內(nèi)部還出現(xiàn)了扭曲和旋轉(zhuǎn)的微觀結(jié)構(gòu),因此赫茲接觸是一個復(fù)雜的多軸應(yīng)力狀態(tài)。(3)WEA在接觸壓力和滾滑比的共同作用下形成且WEA在不同的接觸壓力產(chǎn)生。在WEA中已不存在碳化物且WEA和基體之間存在明顯的界面。在靠近WEA的基體中出現(xiàn)拉長的晶粒和大量的位錯簇。越靠近界面的位置,晶粒細化程度越高。由于晶粒細化,WEA的硬度比基體材料的硬度有明顯的升高。(4)滾動接觸疲勞引起微觀結(jié)構(gòu)變化有兩種方式:納米結(jié)晶和非晶化。于是,WEA可被分為變形WEA和轉(zhuǎn)化WEA。變形的WEA主要包含納米晶,而轉(zhuǎn)化WEA是非晶相和納米晶的共存體。這兩種類型的微觀結(jié)構(gòu)變化均由塑性變形的累積程度決定。
[Abstract]:GCr15 bearing steel is a kind of high carbon chromium steel which is widely used in manufacturing rolling parts such as bearings gears and so on. Usually the bearing in service is subjected to cyclic load including radial compression stress and circumferential friction. The actual life of bearing under this complex working condition is often lower than the design life. Although the contact fatigue properties of bearing steels have been studied for a long time, there are still differences on the failure mechanism of bearing steels. Contact fatigue has become a hot issue for many scholars because the mechanical equipment often runs under high temperature, high speed and high load. In this paper, the contact surface wear morphology and subsurface damage mechanism of the specimens under different load and rolling slip ratio are studied by simulating the working environment of the bearing, which provides a theoretical basis for tracing the fatigue source and prolonging the service life of the bearing. In this paper, GCr15 bearing steel is used as experimental object. Linear contact rolling fatigue test is carried out with MJP-20 rolling contact fatigue tester. The mechanism of contact fatigue subsurface damage is studied by changing load, rolling slip ratio and other test parameters. The uniform microstructure was obtained in the same heat treatment state before the test. The original microstructure and composition content of the processed samples were analyzed. After the test, the wear morphology of the contact surface was observed by optical microscope (OM) and scanning electron microscope (SEM). The microstructures were observed by TEM and TEM. Finally, the hardness of white etched area was measured and compared with that of the matrix material by nano-indentation. Based on the above analysis of the contact surface morphology, sub-surface cracks and microstructure changes. It is concluded that the wear morphology of GCr15 bearing steel under different contact pressure and rolling slip ratio is very different. The test results show that the load and the rolling slip ratio are the common factors affecting the wear degree of the bearing steel. Crack is the direct cause of spalling failure of bearing and other workpieces. The unorientated propagation of cracks will lead to a variety of failure modes, such as pitting, denudation and fracture. Rolling contact fatigue is a complicated process, and under the influence of many factors, Fatigue crack growth is a process of continuous or discontinuous growth, and the direction of fatigue crack growth changes with the change of working conditions. The wear debris in the crack is the result of the relative movement and friction of the crack surface. There are also twisting and rotating microstructures inside the crack, so Hertz contact is a complex multiaxial stress state. WEA is formed under the combined action of contact pressure and roll slip ratio, and WEA is produced at different contact pressure. There are no carbides in WEA and obvious interface between WEA and matrix. Elongated grains and a large number of dislocation clusters appear in the matrix near WEA. The closer the interface is, the higher the grain refinement degree is. Because the hardness of WEA is obviously higher than that of matrix material, there are two ways to change the microstructure of WEA: nanocrystalline and amorphous. Therefore, WEA can be divided into transformed WEA and transformed wea. The deformed WEA mainly contains nanocrystalline, while the transformed WEA is the coexistence of amorphous phase and nanocrystalline. Both types of microstructure change are determined by the cumulative degree of plastic deformation.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG142.1

【參考文獻】

相關(guān)期刊論文 前10條

1 周宇;張杰;楊新文;姜俊楠;;U75V熱處理鋼軌滾動接觸疲勞裂紋和磨耗試驗[J];同濟大學(xué)學(xué)報(自然科學(xué)版);2015年06期

2 謝文新;包燕平;王敏;張旭東;;GCr15軸承鋼探傷缺陷與夾雜物的關(guān)系[J];鋼鐵;2015年03期

3 劉宏基;孫俊杰;江濤;郭生武;柳永寧;林鑫;;一種超高碳鋼的滾動接觸疲勞研究[J];金屬學(xué)報;2014年12期

4 楊光維;郝鑫;楊疊;王新華;黃福祥;王萬軍;;GCr15軸承鋼冶煉過程鋼液潔凈度變化[J];鋼鐵;2014年11期

5 李明鋼;劉潤藻;林騰昌;王成杰;李超;高偉;;GCr15軸承鋼中非金屬夾雜物的轉(zhuǎn)變[J];鋼鐵研究學(xué)報;2014年05期

6 高勝利;王光宏;屈盛官;;軸承鋼的接觸疲勞性能研究[J];機械工程與自動化;2014年03期

7 叢韜;韓建民;張弘;付秀琴;張斌;張澎湃;張關(guān)震;;軸承鋼內(nèi)部缺陷對動車組軸承服役壽命的影響[J];中國鐵道科學(xué);2014年03期

8 李永德;郭衛(wèi)民;徐娜;吳曉峰;時軍波;馬虹;;SUJ2軸承鋼超聲疲勞GBF內(nèi)裂紋擴展規(guī)律[J];材料熱處理學(xué)報;2014年01期

9 DENG Song;HAN XingHui;QIN XunPeng;HUANG Song;;Subsurface crack propagation under rolling contact fatigue in bearing ring[J];Science China(Technological Sciences);2013年10期

10 裘榮鵬;;接觸疲勞失效形貌及機理[J];黑龍江科技信息;2013年20期

相關(guān)碩士學(xué)位論文 前1條

1 佘麗;貝氏體軸承鋼滾動接觸疲勞性能的研究[D];燕山大學(xué);2015年

,

本文編號:1948919

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1948919.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6a295***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
91播色在线免费播放| 午夜日韩在线观看视频| 欧美日韩国内一区二区| 中文字幕亚洲视频一区二区| 国产又粗又猛又爽又黄| 精品国产亚洲区久久露脸| 91人妻人人澡人人人人精品| 99久久人妻中文字幕| 激情图日韩精品中文字幕| 日韩中文字幕在线不卡一区| 成人精品国产亚洲av久久| 成人免费高清在线一区二区| 东京热一二三区在线免| 我想看亚洲一级黄色录像| 精品国产丝袜一区二区| 在线观看免费午夜福利| 欧美一区二区三区高潮菊竹| 99少妇偷拍视频在线| 日本精品啪啪一区二区三区| 国内女人精品一区二区三区| 中文字幕免费观看亚洲视频| 国产精品自拍杆香蕉视频| 中日韩免费一区二区三区| 国产精品十八禁亚洲黄污免费观看 | 欧洲自拍偷拍一区二区| 99久久精品一区二区国产| 午夜福利视频偷拍91| 麻豆一区二区三区精品视频| 国产中文另类天堂二区| 亚洲中文字幕在线观看黑人| 日韩精品一区二区不卡| 国产精品视频一区二区秋霞| 我要看日本黄色小视频| 91亚洲熟女少妇在线观看| 久久少妇诱惑免费视频| 久久婷婷综合色拍亚洲| 亚洲第一视频少妇人妻系列| 精品人妻av区波多野结依| 色综合久久六月婷婷中文字幕 | 不卡视频免费一区二区三区| 黄片在线观看一区二区三区|