提高TC4合金微弧氧化膜層顯微硬度的研究
本文選題:TC4合金 + 微弧氧化。 參考:《長安大學(xué)》2017年碩士論文
【摘要】:微弧氧化技術(shù)可以在鈦合金表面生長一層陶瓷膜層,且不會改變合金內(nèi)部結(jié)構(gòu)與力學(xué)性能。但是,目前所研究的膜層硬度偏低,而在劇烈摩擦環(huán)境下對膜層的硬度有較高的要求,因此需研究能夠提高膜層顯微硬度的微弧氧化處理工藝。本文通過在不同主鹽溶液、不同電參數(shù)和不同有機添加劑的條件下,系統(tǒng)的研究了膜層顯微硬度隨參數(shù)的變化規(guī)律,并通過SEM、EDS、XRD等測試手段對膜層的微觀形貌、元素分布和相組成進行分析。研究發(fā)現(xiàn),膜層相組成是影響膜層顯微硬度的主要因素之一。鋁酸鹽溶液中膜層的顯微硬度最高,但膜基結(jié)合最差,鋯鹽溶液膜層顯微硬度次之,磷酸鹽和硅酸鹽溶液中所得膜層硬度無明顯區(qū)別。在硅酸鹽、磷酸鹽、鋁酸鹽和鋯鹽溶液中對TC4合金微弧氧化處理,鋯鹽溶液下的起弧電壓相對最低,膜層表面粗糙度最小。起弧電壓隨主鹽濃度的增大均逐漸減小。在鋯鹽溶液中,隨時間的增長,微弧氧化膜層厚度逐漸增大,表面孔隙率和粗糙度也逐漸變大,膜層中ZrO2的含量逐漸減小,膜層表面顯微硬度先增加后減小。隨電壓的增大,膜層表面微孔數(shù)量減小,孔徑逐漸變大,表面致密性下降,顯微硬度隨電壓升高呈先增后減趨勢。鋯鹽溶液中制備高硬度微弧氧化膜層的最佳工藝參數(shù)為:氧化時間15 min,電壓420 V,占空比15%,脈沖頻率500 Hz。醇類添加劑和胺類添加劑均可使膜層表面結(jié)構(gòu)致密,微孔分布均勻。在添加丙三醇、N,N-二甲基甲酰胺、脲的溶液中制備的微弧氧化膜層中生成新相TiC提高膜層顯微硬度。醇類添加劑中丙三醇的加入對膜層硬度的提高有促進作用,胺類添加劑中N,N-二甲基甲酰胺、三乙醇胺、脲均可提高膜層顯微硬度,其中脲的加入對膜層顯微硬度的提高最顯著。整體上,胺類添加劑比醇類添加劑更能有效提高膜層顯微硬度。
[Abstract]:A ceramic film can be grown on the surface of titanium alloy by micro-arc oxidation without changing the internal structure and mechanical properties of the alloy. However, the hardness of the film studied at present is on the low side, and the hardness of the film is very high under the severe friction environment. Therefore, it is necessary to study the micro-arc oxidation process which can improve the microhardness of the film. In this paper, the variation of microhardness with different parameters was studied systematically under the conditions of different main salt solution, different electric parameters and different organic additives, and the microstructure of the film was measured by means of SEM EDS XRD and so on. Element distribution and phase composition were analyzed. It is found that the phase composition of the film is one of the main factors affecting the microhardness of the film. The microhardness of the film was the highest in the aluminate solution, but the lowest in the film base, followed by the microhardness in the zirconium salt solution, but there was no obvious difference between the hardness of the film in phosphate solution and that in the silicate solution. In silicate, phosphate, aluminate and zirconium salt solutions, the arc starting voltage and the surface roughness of TC4 alloy are the lowest and the lowest respectively. The arcing voltage decreases with the increase of the concentration of the main salt. In zirconium salt solution, with the increase of time, the thickness of micro-arc oxide film increases gradually, the surface porosity and roughness increase gradually, the content of ZrO2 in the film decreases gradually, and the surface microhardness of the film increases first and then decreases. With the increase of voltage, the number of micropores on the surface of the film decreases, the pore size becomes larger and the surface compactness decreases. The microhardness increases first and then decreases with the increase of voltage. The optimum process parameters for preparing high hardness microarc oxide film in zirconium salt solution are as follows: oxidation time 15 min, voltage 420 V, duty cycle 15, pulse frequency 500 Hz. Alcohol additives and amine additives can make the surface structure of the film compact, and the distribution of micropores is uniform. A new phase TiC was formed in the micro-arc oxide film prepared by adding N-dimethylformamide and urea in the solution of triglyceride to improve the microhardness of the film. The addition of glycerol in alcohol additives can promote the increase of film hardness. N- N- dimethylformamide, triethanolamine and urea can increase the microhardness of the film, and the addition of urea can increase the microhardness of the film. As a whole, amine additives are more effective than alcohol additives in improving the microhardness of the film.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG174.45
【參考文獻】
相關(guān)期刊論文 前10條
1 Ni Ao;Daoxin Liu;Shuaixing Wang;Qing Zhao;Xiaohua Zhang;Mengmeng Zhang;;Microstructure and Tribological Behavior of a TiO_2/hBN Composite Ceramic Coating Formed via Micro-arc Oxidation of Ti 6Al 4V Alloy[J];Journal of Materials Science & Technology;2016年10期
2 盧潔琴;張曉莉;衛(wèi)國英;余云丹;;化學(xué)鍍Ni-W-P薄膜的制備及其耐蝕性能的研究[J];表面技術(shù);2016年04期
3 溝引寧;直研;張丁非;水路凱;張春艷;;有機添加劑在鎂合金陽極氧化中的研究進展[J];功能材料;2015年23期
4 周鵬;林乃明;田偉;姚小飛;田林海;唐賓;;TC4合金微弧氧化層的耐磨性和耐蝕性[J];表面技術(shù);2015年11期
5 苗景國;張玉波;沈鈺;李志宏;王新穎;;三乙醇胺對7075鋁合金微弧氧化陶瓷膜層形貌及性能的影響[J];輕合金加工技術(shù);2015年10期
6 杜三明;靳俊杰;肖宏濱;張永振;;納米Al_2O_3等離子噴涂涂層的制備及性能分析[J];表面技術(shù);2015年06期
7 唐婉霞;嚴(yán)繼康;吳云峰;方樹銘;楊鋼;施哲;;磷酸鹽濃度對微弧氧化陶瓷膜耐腐蝕性能的影響[J];昆明理工大學(xué)學(xué)報(自然科學(xué)版);2015年01期
8 郝建民;夏慧慧;陳宏;陳永楠;郝一鳴;;鈣磷含量對TA2醫(yī)用鈦合金微弧氧化膜層的影響[J];材料熱處理學(xué)報;2014年03期
9 張長輝;朱陸軍;張躍飛;馬捷;;幾種無機添加劑對鋁合金微弧氧化層微結(jié)構(gòu)與性能的影響[J];腐蝕科學(xué)與防護技術(shù);2013年06期
10 湯金鋼;劉道新;唐長斌;張曉化;;Ti6Al4V鈦合金表面陰極輔助離子氮化及其摩擦學(xué)性能[J];中國科學(xué):技術(shù)科學(xué);2013年08期
相關(guān)博士學(xué)位論文 前1條
1 龍北紅;鈦及其合金微弧氧化膜的制備表征及特性研究[D];吉林大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 王超;Ti6Al4V表面TiO_2/ZrO_2微弧氧化復(fù)合陶瓷層的制備及高溫氧化行為研究[D];長安大學(xué);2015年
2 胡冰;微弧氧化法鈦合金表面有色膜層制備及熱穩(wěn)定性研究[D];哈爾濱工業(yè)大學(xué);2014年
3 須文雅;鈦合金微弧氧化膜層結(jié)構(gòu)性能研究[D];長安大學(xué);2013年
4 施濤;鈦合金微弧氧化耐磨陶瓷層制備與性能研究[D];北京交通大學(xué);2011年
,本文編號:1945828
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1945828.html