軸類件拔長鍛透性及應(yīng)力應(yīng)變分析
本文選題:拔長 + V型砧。 參考:《安徽工業(yè)大學(xué)》2017年碩士論文
【摘要】:軸類大鍛件的發(fā)展應(yīng)用與各行業(yè)領(lǐng)域中大型設(shè)備的運(yùn)轉(zhuǎn)息息相關(guān)。用于生產(chǎn)大鍛件的坯料,內(nèi)部會存在不同程度的疏松、孔洞等缺陷,集中在中心軸線附近,影響鍛件質(zhì)量。而且隨著坯料尺寸改變和重量的增加,坯料芯部缺陷更加嚴(yán)重。這些缺陷的存在直接影響了大鍛件的運(yùn)轉(zhuǎn)和壽命期限。相對于其它生產(chǎn)工藝,鍛造是改善和消除大型鍛件芯部缺陷較為有效的方法。利用鍛造方法來修復(fù)大鍛件內(nèi)部缺陷,就是要在有缺陷的區(qū)域上能夠產(chǎn)生足夠大的變形量和足夠高的靜水壓應(yīng)力,二者缺一不可。本文結(jié)合生產(chǎn)實(shí)際,應(yīng)用有限元軟件MSC.SuperForm對軸類大鍛件拔長過程進(jìn)行熱力耦合數(shù)值模擬,分析了在多種拔長過程中鍛件芯部鍛透性和內(nèi)部應(yīng)力應(yīng)變分布規(guī)律。研究表明,V型砧拔長,鍛后鍛件內(nèi)部等效應(yīng)變分布不均勻,各處變形差異較大,經(jīng)三道次拔長后,鍛件芯部鍛透性較好,平均累積等效應(yīng)變可達(dá)1.6。四砧徑向鍛造,鍛件外層金屬變形較大,芯部金屬變形較小,鍛件芯部鍛透性較差,經(jīng)四道次拔長后,端部中心最小等效應(yīng)變小于0.2;中間部分等效應(yīng)變較大,芯部累積等效應(yīng)變?yōu)?.8左右。V型砧拔長,在拔長過程中鍛件內(nèi)部應(yīng)力表現(xiàn)為兩拉一壓、兩壓一拉和三向壓應(yīng)力狀態(tài);四砧徑向鍛造,芯部周圍始終存在軸向拉應(yīng)力區(qū)域。無論是V型砧拔長還是四砧徑向鍛造,鍛件芯部平均應(yīng)力都為負(fù),有利于芯部缺陷的鍛合。為提高四砧徑向鍛造變形滲透性,本文還分析了四砧徑向鍛造過程中錘頭的尺寸和形狀、轉(zhuǎn)速、壓下量、軸向送進(jìn)量等工藝參數(shù)對鍛件芯部鍛透性的影響規(guī)律,為軸類大鍛件芯部缺陷的鍛合提供參考依據(jù)。
[Abstract]:The development and application of shaft forgings are closely related to the operation of large equipment in various industries. For the production of large forgings, internal defects such as porosity and holes will exist in varying degrees, which are concentrated near the central axis and affect the quality of forgings. And with the change of the blank size and the increase of weight, the defects of the blank core become more serious. The existence of these defects directly affects the operation and lifetime of large forgings. Compared with other production processes, forging is an effective method to improve and eliminate the core defects of large forgings. In order to repair the internal defects of large forgings by forging method, it is necessary to produce large enough deformation and high hydrostatic stress in the defective region. In this paper, the thermo-mechanical coupling numerical simulation of the drawing process of large axial forgings is carried out by using the finite element software MSC.SuperForm, and the forging permeability and stress and strain distribution of the core in various drawing processes are analyzed. The results show that the internal equivalent strain distribution is not uniform and the deformation difference is great. After three times of drawing, the forging core has better forging permeability, and the average cumulative equivalent strain can reach 1.6. In the four anvil radial forging, the outer metal deformation of the forgings is large, the core metal deformation is small, the forging permeability of the forgings core is poor, the minimum equivalent strain of the end center is less than 0.2 after the four-pass drawing, the equivalent strain of the middle part is larger, The cumulative iso-effect of core is about 0.8. During the process of drawing, the internal stress of the forgings is shown as two tension and one press, two pressure and one tension, and three direction compressive stress, and the axial tensile stress region always exists around the core in the radial forging of four anvil. The average stress of the core of the forging is negative, which is beneficial to the forging of the core defect, whether the V-shape anvil is long or the four-anvil is radial forging. In order to improve the deformation permeability of four-anvil radial forging, this paper also analyzes the influence of the technological parameters such as the size and shape of hammer head, rotational speed, reduction amount and axial feed rate on the forging permeability of the forging core during the four-anvil radial forging process. It provides the reference for forging the core defect of the shaft type big forgings.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG316
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 牛立群;張琦;解明;楊德生;李七平;韓文科;;基于FORGE-3D徑向鍛造工藝的數(shù)值模擬[J];鍛壓技術(shù);2017年02期
2 陳飛;支晨琛;韓帥;王進(jìn);李思靜;岳學(xué)斌;吳建;;軸類拔長工藝的研究與展望[J];機(jī)械工程與自動化;2016年04期
3 甘紅勝;趙欣;李勇;;高Cr支承輥KD法鍛造工藝模擬研究[J];大型鑄鍛件;2016年02期
4 余瓊;董湘懷;吳云劍;;徑向壓下率與送進(jìn)率對徑向鍛造工件質(zhì)量的影響[J];鍛壓技術(shù);2015年08期
5 曹明;韓笑宇;栗文鋒;;四砧徑向鍛造工藝研究[J];大型鑄鍛件;2015年04期
6 田峰;賈琛;;大型鍛件的鍛造工藝研究進(jìn)展[J];熱加工工藝;2015年05期
7 楊延竹;陳能潔;朱煒;盛佳偉;齊亮;馬賀賀;張茂松;;大鍛件尺寸在線測量技術(shù)的研究[J];鍛壓技術(shù);2015年01期
8 欒謙聰;董湘懷;吳云劍;;徑向鍛造工藝參數(shù)對鍛透性的影響[J];中國機(jī)械工程;2014年22期
9 薛飛;崔振山;隋大山;;避免大鍛件內(nèi)部拉應(yīng)力的工藝參數(shù)研究[J];模具技術(shù);2014年03期
10 譚波;易幼平;何海林;;弧形砧砧型參數(shù)對車軸鍛件拔長效率的影響[J];鍛壓技術(shù);2014年03期
相關(guān)博士學(xué)位論文 前1條
1 任運(yùn)來;大型鍛件內(nèi)部缺陷修復(fù)條件和修復(fù)方法研究[D];燕山大學(xué);2003年
相關(guān)碩士學(xué)位論文 前4條
1 余瓊;壓下率與送進(jìn)率對徑向鍛造鍛件質(zhì)量影響的研究[D];上海交通大學(xué);2015年
2 張建;不同錘頭和進(jìn)給量對徑向鍛造高速鋼M2碳化物的影響[D];河北科技大學(xué);2012年
3 果棟;四砧拔長中心壓實(shí)工藝參數(shù)研究[D];燕山大學(xué);2012年
4 付強(qiáng);大型軸類鍛件鍛造過程的數(shù)值模擬研究[D];上海交通大學(xué);2008年
,本文編號:1943416
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1943416.html