熔絲鎢極氬弧焊工藝研究
本文選題:熔絲鎢極氬弧焊 + 工藝 ; 參考:《沈陽(yáng)理工大學(xué)》2017年碩士論文
【摘要】:傳統(tǒng)鎢極氬弧(TIG)焊雖然焊接過(guò)程穩(wěn)定,焊接質(zhì)量好,但是焊接效率低;傳統(tǒng)的熔化極氬弧(MIG)焊雖然焊接效率相對(duì)于傳統(tǒng)TIG焊較高,但是焊接過(guò)程不穩(wěn)定,有飛濺存在。熔絲鎢極氬弧焊(Tungsten Inert Gas)的焊接方法是在總結(jié)了傳統(tǒng)TIG焊和MIG焊的優(yōu)缺點(diǎn)的基礎(chǔ)上提出的,其工作原理為:焊絲和工件同時(shí)并聯(lián)接在電源的正極,鎢極接在電源的負(fù)極。焊接開(kāi)始時(shí),鎢極與焊絲和工件都產(chǎn)生電弧,并且鎢極與工件產(chǎn)生的電弧可以熔化工件,鎢極與焊絲產(chǎn)生的電弧用來(lái)熔化焊絲,因此可以提高焊接效率。本論文設(shè)計(jì)了熔絲TIG焊系統(tǒng),實(shí)現(xiàn)了穩(wěn)定的熔絲TIG焊接。使用ER50-6焊絲在Q235鋼板上進(jìn)行了熔絲TIG堆焊,研究了焊接工藝參數(shù)對(duì)焊接過(guò)程的穩(wěn)定性以及焊縫成形的影響,并且對(duì)合適工藝參數(shù)下的對(duì)接接頭進(jìn)行了組織和力學(xué)性能的分析,并計(jì)算了焊接過(guò)程中的飛濺率。與合適工藝參數(shù)下的MIG焊和TIG焊進(jìn)行了飛濺率以及焊接接頭的組織和力學(xué)性能的對(duì)比。在Q235鋼板上堆焊了304不銹鋼焊絲,測(cè)量了合適工藝參數(shù)下熔絲TIG焊的熔合比,并與MIG焊進(jìn)行了對(duì)比。熔絲TIG對(duì)接焊的合適工藝參數(shù)為:焊接設(shè)定電流150A,焊接電壓20V,焊接速度210mm/min,鎢極距離工件6~8mm,MIG焊槍與TIG焊槍同時(shí)通氣,氣體流量分別為10~12L/min。熔絲TIG焊焊縫的組織為珠光體和鐵素體,垂直于熔合區(qū)呈柱狀晶長(zhǎng)大,并帶有少量的滲碳體,在焊縫上部為等軸晶,焊縫組織較細(xì)小。熔絲TIG焊焊縫的硬度為200~230HV,低于MIG焊和TIG焊焊縫硬度;接頭拉伸強(qiáng)度500MPa,稍高于MIG焊接頭拉伸強(qiáng)度,和TIG焊接頭拉伸強(qiáng)度相當(dāng);焊縫沖擊吸收功27.5J,高于MIG焊和TIG焊焊縫沖擊吸收功;室溫下的冷彎角可達(dá)180°,與MIG焊和TIG焊接頭相當(dāng)。熔絲TIG焊的飛濺量與TIG焊非常接近,飛濺率僅有0.057%,遠(yuǎn)低于MIG焊的2.984%,焊接過(guò)程比較穩(wěn)定。熔絲TIG焊的熔合比達(dá)到17.34%,低于MIG堆焊的23.532%。
[Abstract]:Although the traditional TIG welding process is stable and the welding quality is good, but the welding efficiency is low, the traditional welding efficiency is higher than that of the traditional TIG welding, but the welding process is unstable and spatter exists. The welding method of Tungsten Inert Gas is put forward on the basis of summarizing the advantages and disadvantages of traditional TIG welding and MIG welding. The working principle is as follows: the wire and workpiece are connected to the positive electrode of the power source at the same time, and the tungsten electrode is connected to the negative electrode of the power source. At the beginning of welding, both tungsten electrode and welding wire and workpiece produce arc, and the arc produced by tungsten electrode and workpiece can melt the workpiece, and the arc produced by tungsten electrode and welding wire can be used to melt the wire, so the welding efficiency can be improved. In this paper, a fuse TIG welding system is designed, and a stable fuse TIG welding is realized. Fuse TIG surfacing welding was carried out on Q235 steel plate with ER50-6 wire. The effect of welding parameters on the stability of welding process and weld forming was studied, and the microstructure and mechanical properties of butt joint were analyzed. The spatter rate in welding process is calculated. The spatter rate, microstructure and mechanical properties of the welded joints were compared with those of MIG welding and TIG welding under appropriate process parameters. 304 stainless steel wire was surfaced on Q235 steel plate. The fusion ratio of TIG welding was measured and compared with that of MIG welding. The suitable technological parameters of TIG butt welding are as follows: welding current 150A, welding voltage 20V, welding speed 210 mm / min, tungsten electrode distance 6 mm ~ 8 mm and TIG welding torch simultaneously ventilating, gas flow rate is 10 ~ 12 L / min. The microstructure of the weld of TIG welding is pearlite and ferrite. The microstructure of the weld is columnar crystal growth perpendicular to the fusion zone and a small amount of cementite. In the upper part of the weld is equiaxed crystal and the microstructure of the weld is smaller. The hardness of welding seam of fuse TIG welding is 200230HVwhich is lower than that of MIG welding and TIG welding weld, the tensile strength of joint is 500MPa, which is a little higher than that of MIG welding joint, and the tensile strength of TIG welding joint is equivalent to that of TIG welding joint, the impact absorption energy of weld seam is 27.5J, which is higher than that of MIG welding and TIG welding weld. The cold bend angle can reach 180 擄at room temperature, which is equivalent to that of MIG welding and TIG welding. The spatter amount of fuse TIG welding is very close to that of TIG welding, and the spatter rate is only 0.057, which is much lower than that of MIG welding, and the welding process is relatively stable. The fusion ratio of fuse TIG welding is 17.34, which is lower than that of MIG surfacing welding.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG444.74
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張忠海;辛宇;;低合金鋼熱絲TIG焊技術(shù)研究[J];機(jī)械工程師;2015年12期
2 郭龍龍;鄭華林;符運(yùn)豪;劉振平;李?lèi)倸J;;熱絲TIG堆焊Inconel625工藝參數(shù)優(yōu)化及組織與性能研究[J];熱加工工藝;2015年23期
3 唐舵;王春明;田曼;王軍;胡席遠(yuǎn);;SUS301L-HT不銹鋼激光焊接與MIG焊接對(duì)比試驗(yàn)研究[J];中國(guó)激光;2015年07期
4 謝芋江;周培山;楊祥海;景勇俊;;Q235B鋼薄板RSW焊接接頭金相組織分析[J];電焊機(jī);2013年07期
5 呂小合;劉國(guó)鋒;;淺談熱絲TIG自動(dòng)焊接技術(shù)及工藝實(shí)驗(yàn)[J];安裝;2013年S1期
6 姚屏;薛家祥;馬前進(jìn);陳輝;陳曉東;;雙絲MIG焊對(duì)稱(chēng)過(guò)渡波形控制及其工藝[J];焊接學(xué)報(bào);2012年07期
7 楊濤;張生虎;高洪明;吳林;許可望;劉永貞;;TIG-MIG復(fù)合焊電弧特性機(jī)理分析[J];焊接學(xué)報(bào);2012年07期
8 張良鋒;楊公升;許威;宋國(guó)祥;文海龍;;窄間隙熱絲TIG焊技術(shù)經(jīng)濟(jì)特性分析與發(fā)展現(xiàn)狀[J];石油工程建設(shè);2011年02期
9 趙福海;華學(xué)明;葉欣;吳毅雄;;熱絲TIG焊方法最新研究進(jìn)展[J];熱加工工藝;2011年03期
10 崔麗;李曉延;賀定勇;沓名宗春;;工業(yè)純鈦光纖激光-MIG復(fù)合焊接工藝及性能[J];焊接學(xué)報(bào);2009年11期
相關(guān)博士學(xué)位論文 前1條
1 曹梅青;雙絲間接電弧氣體保護(hù)焊研究[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前2條
1 袁政偉;不銹鋼A-TIG焊應(yīng)用工藝試驗(yàn)研究[D];蘭州理工大學(xué);2014年
2 王樹(shù)保;雙鎢極氬弧焊物理特性及工藝研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):1935784
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1935784.html