葉輪材料激光熱絲熔覆工藝優(yōu)化與質(zhì)量評(píng)價(jià)研究
本文選題:激光熱絲熔覆 + 工藝優(yōu)化設(shè)計(jì); 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:低碳馬氏體析出硬化不銹鋼FV520B具有良好的力學(xué)性能,被廣泛用于大型離心式壓縮機(jī)轉(zhuǎn)子葉輪等承載零部件的制造過程。由于葉輪的工作環(huán)境苛刻,容易產(chǎn)生疲勞、磨損、裂紋等失效。對(duì)表面受損失效的部件進(jìn)行修復(fù)再制造,不僅可以減少自然資源消耗,降低成本,更是對(duì)延長(zhǎng)葉輪服役壽命,保障設(shè)備運(yùn)轉(zhuǎn)起到重要支撐作用。激光熱絲熔覆相比于傳統(tǒng)的修復(fù)技術(shù)具有熱輸入小、材料/能量利用率高等特點(diǎn),是一種高效的修復(fù)工藝。修復(fù)后在基體組織與熔覆層形成新的界面,定量衡量其成形質(zhì)量與評(píng)價(jià)修復(fù)后界面力學(xué)性能,對(duì)于保證修復(fù)質(zhì)量、提供產(chǎn)品可靠性具有重要意義。本文針對(duì)激光熱絲熔覆FV520B材料的工藝評(píng)價(jià)與界面性能評(píng)估問題,首先,提出體積缺陷率作為評(píng)價(jià)熔覆層成形質(zhì)量的判據(jù),采用田口方法設(shè)計(jì)并分析了FV520B鋼激光熔覆工藝實(shí)驗(yàn);通過平均信噪比分析,確定了四項(xiàng)關(guān)鍵工藝參數(shù)(激光功率、掃描速度、送絲速度、熱絲電流)的最優(yōu)組合,并采用方差分析明確了各參數(shù)對(duì)熔覆層成形質(zhì)量的貢獻(xiàn)率。結(jié)果表明,在最優(yōu)的工藝參數(shù)下,界面結(jié)合良好,金相組織均勻,無雜質(zhì)氣孔,說明熔覆過程平穩(wěn)連續(xù),具有良好的成形質(zhì)量。其次,通過響應(yīng)曲面法分析了單因子和多因子交互作用的影響規(guī)律,建立了反映單道次熔覆工藝參數(shù)和成形質(zhì)量關(guān)系的回歸模型和經(jīng)驗(yàn)公式。同時(shí),在獲得穩(wěn)定熱絲過渡的前提下,設(shè)計(jì)了多點(diǎn)測(cè)溫試驗(yàn),得到激光熔覆過程溫度場(chǎng)的三維空間分布,通過建立熔覆過程溫度場(chǎng)分布模型,分析了溫度、組織和性能之間的映射關(guān)系。最后,結(jié)合工藝參數(shù)與成形質(zhì)量之間的擬合方程,建立搭接率模型,量化分析激光熱絲多道次熔覆過程。在激光熱絲熔覆工藝參數(shù)優(yōu)化的基礎(chǔ)上,設(shè)計(jì)了高強(qiáng)鋼熔覆界面結(jié)合強(qiáng)度的測(cè)量方法與實(shí)驗(yàn)裝置,定量表征熔覆層基體界面結(jié)合強(qiáng)度。結(jié)果表明,在激光功率P為1910 W、掃描速度Vs為6.5 mm/s、送絲速度Vf為2.5 m/min、熔覆電流I為50 A、搭接率n為43.13%時(shí),可以形成大面積組織均勻致密的多道次修復(fù)層。此時(shí)熔覆層基體間界面結(jié)合強(qiáng)度為1026.6 MPa,與基體材料強(qiáng)度基本相同,達(dá)到了較好的熔覆修復(fù)效果。
[Abstract]:Low-carbon martensite precipitation hardening stainless steel (FV520B) has good mechanical properties and is widely used in the manufacturing process of bearing parts such as rotor impeller of large centrifugal compressor. Due to the harsh working environment of the impeller, fatigue, wear, crack and other failures are easy to occur. The repair and remanufacture of damaged parts can not only reduce the consumption of natural resources and reduce the cost, but also prolong the service life of impeller and support the operation of equipment. Compared with the traditional repair technology, laser hot wire cladding has the advantages of small heat input and high material / energy utilization ratio, so it is an efficient repair process. A new interface was formed between the matrix structure and the cladding layer after repair. It is of great significance to quantitatively evaluate the forming quality and evaluate the mechanical properties of the interface in order to guarantee the repair quality and provide the product reliability. In this paper, the process evaluation and interface performance evaluation of laser hot-wire cladding FV520B material are discussed. Firstly, the volumetric defect rate is proposed as the criterion to evaluate the forming quality of the cladding layer. Taguchi method is used to design and analyze the laser cladding process experiment of FV520B steel. The optimal combination of four key process parameters (laser power, scanning speed, wire feeding speed, hot wire current) was determined by the analysis of average SNR, and the contribution rate of each parameter to the forming quality of the cladding layer was determined by variance analysis. The results show that under the optimum process parameters, the interface is well bonded, the metallographic structure is uniform, and there is no impurity porosity, which indicates that the cladding process is stable and continuous, and has good forming quality. Secondly, the law of interaction between single factor and multi-factor is analyzed by response surface method, and the regression model and empirical formula are established to reflect the relationship between process parameters and forming quality of single pass cladding. At the same time, on the premise of obtaining stable hot wire transition, a multi-point temperature measurement test is designed to obtain the three-dimensional spatial distribution of the temperature field in the laser cladding process. The temperature distribution model is established and the temperature is analyzed. Mapping between organization and performance. Finally, based on the fitting equation between process parameters and forming quality, the overlap rate model is established, and the multipass cladding process of laser hot wire is analyzed quantitatively. Based on the optimization of laser hot wire cladding process parameters, the measuring method and experimental device for the interface bonding strength of high strength steel cladding were designed, and the interface bonding strength of the cladding substrate was quantitatively characterized. The results show that when the laser power P is 1910 W, the scanning speed Vs is 6.5 mm / s, the wire feeding speed V f is 2.5 m / min, the cladding current I is 50 A, and the lap ratio n is 43.13, the multipass repair layer with uniform and compact structure can be formed. The interfacial bonding strength of the cladding layer is 1026.6 MPA, which is basically the same as that of the substrate material, and the effect of cladding repair is good.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李俊;范金輝;徐夢(mèng)廓;朱世根;;42CrMo鋼火焰噴涂Ni60/WC涂層的電接觸強(qiáng)化研究[J];表面技術(shù);2016年09期
2 Shanmugarajan B.;Rishabh SHRIVASTAVA;Sathiya P.;Buvanashekaran G.;;Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis[J];Defence Technology;2016年04期
3 徐濱士;方金祥;董世運(yùn);劉曉亭;閆世興;宋超群;夏丹;;FV520B不銹鋼激光熔覆熱影響區(qū)組織演變及其對(duì)力學(xué)性能的影響[J];金屬學(xué)報(bào);2016年01期
4 趙偉;儲(chǔ)滿生;湯雅婷;唐玨;;基于田口法的釩鈦磁鐵礦熱壓塊抗壓強(qiáng)度的優(yōu)化[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年10期
5 溫鵬;鄭世卿;單際國(guó);馮振華;;激光熱絲焊電阻熱控制及送絲參數(shù)優(yōu)化[J];焊接學(xué)報(bào);2015年09期
6 任維彬;董世運(yùn);徐濱士;王玉江;閆世興;方金祥;;FV520(B)鋼葉片模擬件激光再制造工藝優(yōu)化及成形修復(fù)[J];材料工程;2015年01期
7 周草臣;陳自郁;何中市;;高維多目標(biāo)優(yōu)化算法分析研究[J];計(jì)算機(jī)科學(xué);2014年S1期
8 張宏杰;溫茂遠(yuǎn);侯振;里達(dá);;結(jié)晶器銅板涂層界面結(jié)合強(qiáng)度的測(cè)定[J];表面技術(shù);2014年03期
9 鄭世卿;溫鵬;單際國(guó);;激光熱絲焊接過程焊絲過渡行為及其穩(wěn)定性的研究[J];中國(guó)激光;2014年04期
10 董敬莎;孫曉燕;牛博英;;正交和均勻?qū)嶒?yàn)設(shè)計(jì)方法的比較[J];科技視界;2013年22期
相關(guān)博士學(xué)位論文 前1條
1 蘇翔;復(fù)雜型線銑刀數(shù)字化設(shè)計(jì)及銑削力預(yù)測(cè)研究[D];山東大學(xué);2016年
相關(guān)碩士學(xué)位論文 前2條
1 周文華;預(yù)變形鋁合金板材高應(yīng)變率塑性變形行為研究[D];南昌航空大學(xué);2014年
2 向?qū)氄?基于田口方法的脈沖Nd:YAG激光焊接工藝參數(shù)優(yōu)化[D];江蘇大學(xué);2010年
,本文編號(hào):1923629
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1923629.html