雙絲間接電弧焊堆焊工藝及堆焊層耐蝕性能研究
本文選題:雙絲間接電弧焊 + 堆焊層; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:雙絲間接電弧氣體保護(hù)焊(簡(jiǎn)稱雙絲間接電弧焊)是一種新型焊接技術(shù),焊接時(shí)工件不接電極,兩焊絲分別與焊接電源的正、負(fù)極相連,電弧在兩焊絲間產(chǎn)生,雙絲間接電弧焊的電弧熱量主要用來(lái)熔化焊絲,相同條件下能熔化更多焊絲,熔敷速度大,具有高效、節(jié)能、熔合比小等優(yōu)點(diǎn)。本文采用雙絲間接電弧焊在Q235表面堆焊奧氏體不銹鋼層,針對(duì)改善熔深問(wèn)題,施加外加磁場(chǎng)以及TIG復(fù)合熱源進(jìn)行堆焊。通過(guò)高速攝像機(jī)拍攝了雙絲間接電弧及熔滴過(guò)渡形態(tài),采用光學(xué)顯微鏡(OM)、掃描電鏡(SEM)、能譜分析(EDS)等手段進(jìn)行堆焊層的組織及形貌分析。本文研究了焊接參數(shù)、外加磁場(chǎng)及TIG復(fù)合熱源對(duì)焊接工藝、耐晶間腐蝕性及耐點(diǎn)蝕性能影響。利用高速攝像機(jī)拍攝的雙絲間接電弧形態(tài)呈"提籃"狀,熔滴是由兩串陰陽(yáng)極熔滴構(gòu)成,焊接電流越大,熔滴夾角越小。外加磁場(chǎng)可改變雙絲間接電弧形態(tài),施加X正方向磁場(chǎng)時(shí),電弧有收縮的趨勢(shì),X負(fù)方向磁場(chǎng)可拉長(zhǎng)電弧,有利于提高工件熱輸入;施加Y方向磁場(chǎng)時(shí),電弧在YOZ面偏轉(zhuǎn);施加Z向磁場(chǎng)時(shí),電弧在XOZ面偏轉(zhuǎn)。雙絲間接電弧焊堆焊后觀察堆焊層成形發(fā)現(xiàn),焊接電流越大或焊絲夾角越大,堆焊層成形越好。焊絲夾角30°時(shí),焊接電流達(dá)到160A及以上,堆焊層成形較好。X負(fù)向磁場(chǎng)及復(fù)合TIG熱源均會(huì)使堆焊層外形變好。堆焊時(shí)復(fù)合TIG熱源,可有效增加堆焊層的部分熔深。分析了雙絲間接電弧焊堆焊層組織及鐵素體含量,結(jié)果表明對(duì)于使用奧氏體基的ER308焊絲,堆焊層的組織受雙絲間接電弧焊堆焊工藝影響,焊絲夾角增大,施加X負(fù)向磁場(chǎng)以及復(fù)合TIG熱源,鐵素體含量增加。焊絲夾角30°時(shí),堆焊層中鐵素體主要以點(diǎn)狀和蠕蟲狀存在;焊絲夾角70°時(shí),堆焊層中鐵素體以骨架狀和板條狀存在。電化學(xué)動(dòng)電位再活化法測(cè)試的晶間腐蝕性試驗(yàn)結(jié)果表明,雙絲間接電弧焊所得堆焊層耐晶間腐蝕性非常好。焊絲夾角30°時(shí),再活化率Ra隨焊接電流的增大先減小后增大,施加外加X負(fù)向磁場(chǎng)以及復(fù)合TIG熱源,對(duì)堆焊層耐晶間腐蝕性有一定影響,但仍保持較好的耐晶間腐蝕性;焊絲夾角70°時(shí),焊接電流增大以及焊速降低均會(huì)使Ra值略有增大。在使用同樣焊絲的情況下雙絲間接電弧焊堆焊層耐晶間腐蝕性比使用MIG焊堆焊的好,略低于304不銹鋼母材,但遠(yuǎn)優(yōu)于304不銹鋼堆焊層耐蝕性。點(diǎn)蝕試驗(yàn)結(jié)果表明,焊絲夾角增大、焊速減小、焊接電流增大、外加磁場(chǎng)的施加或TIG熱源的復(fù)合,均使點(diǎn)蝕電位下降,耐點(diǎn)蝕性能下降,這與熔敷金屬的冷卻速度不同影響貧鉻區(qū)及焊接殘余應(yīng)力有關(guān)。雙絲間接電弧焊堆焊層比MIG焊的耐點(diǎn)蝕性好。雙絲間接電弧焊堆焊層發(fā)生點(diǎn)蝕之前,先出現(xiàn)亞穩(wěn)蝕孔,有些亞穩(wěn)蝕孔由于條件不足而再鈍化,有些轉(zhuǎn)化為穩(wěn)態(tài)蝕孔。穩(wěn)態(tài)蝕孔上面存在蝕孔蓋,形狀類似花邊形。
[Abstract]:Double wire indirect arc gas shielded welding (double wire indirect arc welding) is a new welding technology. When welding, the workpiece is not connected to the electrode. The two wire is connected with the positive and negative electrode of the welding power. The arc is produced between the two wires. The arc heat of the double wire indirect arc welding is mainly used to melt the welding wire, and more wire can be melted under the same condition. With the advantages of high application speed, high efficiency, energy saving and small fusion ratio, this paper uses double wire indirect arc welding to weld austenitic stainless steel layer on Q235 surface. In order to improve the melting depth, the applied magnetic field and TIG composite heat source are applied to the welding. The arc and droplet transition form of double wire are taken by high speed camera, and optical microscope (O) is adopted. M), scanning electron microscopy (SEM), energy spectrum analysis (EDS) and other means to analyze the microstructure and morphology of the surfacing layer. This paper studied the welding parameters, the applied magnetic field and the TIG compound heat source on the welding process, the intergranular corrosion resistance and the pitting resistance. The double wire indirect arc form was shot by the high-speed camera, and the droplet was two series of yin and Yang. The larger the welding current is, the larger the welding current is, the smaller the angle of the droplet is, the smaller the angle of the droplet. The applied magnetic field can change the shape of the indirect arc of the double wire. When the X positive magnetic field is applied, the arc has the trend of contraction. The negative direction of the X can lengthen the arc, which is beneficial to the increase of the thermal input of the workpiece. When the magnetic field is applied in the direction of Y, the arc is deflected on the YOZ surface, and when the Z is applied to the magnetic field, the arc is partial to XOZ surface. After the surfacing welding of double wire indirect arc welding, it is found that the greater the welding current or the greater the angle of the welding wire, the better the forming of the surfacing layer. The welding current reaches 160A and above when the angle of welding wire is 30 degrees. The shape of the welding layer is better.X negative magnetic field and the compound TIG heat source will make the shape of the surfacing layer better. The composite TIG heat source can be effectively increased when the surfacing is surfacing. The weld layer structure and ferrite content of double wire indirect arc welding are analyzed. The results show that the structure of ER308 welding wire using austenite base is affected by double wire indirect arc welding process, the angle of welding wire is increased, the X negative magnetic field is applied and the TIG heat source is added, the content of ferrite is increased. The angle of welding wire is 3 At 0 degrees, the ferrite in the surfacing layer is mainly in the form of point and vermicular. When the angle of the welding wire is 70 degrees, the ferrite in the surfacing layer exists in the skeleton and strip shape. The intergranular corrosion test results of the electrochemical potential reactivation test show that the intergranular corrosion resistance of the surfacing layer obtained by the double wire indirect arc welding is very good. The reactivation of the welding wire is 30 degrees. The rate of Ra decreases and then increases with the increase of the welding current, and the added X negative magnetic field and the compound TIG heat source have a certain effect on the intergranular corrosion resistance of the surfacing layer, but still maintain a better intercrystalline corrosion resistance. When the angle of welding wire is 70 degrees, the increase of the welding current and the decrease of the welding speed will make the Ra value increase slightly. The intergranular corrosion resistance of lower double wire indirect arc welding surfacing layer is better than that of MIG welding. It is slightly lower than 304 stainless steel, but it is far superior to the corrosion resistance of 304 stainless steel. The pitting test results show that the angle of welding wire increases, the welding speed decreases, the welding current is increased, the applied magnetic field or the compound of the TIG heat source will decrease the pitting potential. The pitting performance decreases, which is related to the difference in the cooling rate of the deposited metal and the effect of the residual stress on the poor chromium zone and the welding residual stress. The double wire indirect arc welding layer has better pitting resistance than the MIG welding. The metastable corrosion hole appeared before the double wire indirect arc welding layer occurred pitting, and some metastable etched holes were passivated, and some were converted to stability. Etched holes. There is a hole cover on the steady etching hole, which is similar to the lace shape.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG455
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Л.Α.Чкало ,宋忠明;等離子粉末堆焊[J];國(guó)外機(jī)車車輛工藝;2004年05期
2 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));2009年02期
3 ;孔內(nèi)壁的填砂堆焊法[J];焊接;1970年04期
4 郭達(dá)爾斯基;齊國(guó)治;胡旗振;;蘇聯(lián)堆焊工作目前的主要方向[J];焊接;1960年01期
5 ;羅馬尼亞高頻堆焊犁鏵的一些情況[J];糧油加工與食品機(jī)械;1973年01期
6 王德?lián)?仲繼才;;用堆焊法修補(bǔ)錘砧[J];鍛壓機(jī)械;1977年01期
7 凡里;;大面積多絲單道堆焊[J];焊接;1980年06期
8 張家有;;超聲探測(cè)堆焊層下裂紋的探討[J];焊接;1984年06期
9 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));1994年03期
10 ;堆焊[J];機(jī)械制造文摘(焊接分冊(cè));1995年05期
相關(guān)會(huì)議論文 前10條
1 張迪;單際國(guó);任家烈;劉景鳳;沈風(fēng)剛;;光束反應(yīng)合成碳化物增強(qiáng)的鎳基合金堆焊層[A];第四屆十三省區(qū)市機(jī)械工程學(xué)會(huì)科技論壇暨2008海南機(jī)械科技論壇論文集[C];2008年
2 金卿;;壓力容器堆焊層鐵素體數(shù)超標(biāo)原因分析及預(yù)防措施和解決方案[A];第十五次全國(guó)焊接學(xué)術(shù)會(huì)議論文集[C];2010年
3 劉航;田志凌;汪光勝;徐平;;不銹鋼堆焊層的充氫試驗(yàn)研究[A];第九次全國(guó)焊接會(huì)議論文集(第1冊(cè))[C];1999年
4 謝蒙生;;鋼質(zhì)基體黃銅堆焊氣焊工藝研究[A];第十一次全國(guó)焊接會(huì)議論文集(第1冊(cè))[C];2005年
5 張迪;單際國(guó);任家烈;劉景鳳;沈風(fēng)剛;;光束反應(yīng)合成碳化物增強(qiáng)的鎳基合金堆焊層[A];北京機(jī)械工程學(xué)會(huì)2008年優(yōu)秀論文集[C];2008年
6 耿香月;;模具修復(fù)用冷堆焊層的成分、組織及性能分析[A];第四屆金屬材料及熱處理年會(huì)論文集(上)[C];1991年
7 魏學(xué)安;林建鴻;王艷;吳東棣;;不銹鋼堆焊剝離過(guò)程中應(yīng)力作用的研究[A];第四屆全國(guó)壓力容器學(xué)術(shù)會(huì)議論文集[C];1997年
8 單際國(guó);任家烈;;45#鋼表面光束粉末堆焊層的耐磨性能[A];第九次全國(guó)焊接會(huì)議論文集(第1冊(cè))[C];1999年
9 沈士明;劉斌;;加氫反應(yīng)器堆焊層表面裂紋疲勞擴(kuò)展的形貌與速率的研究[A];壓力容器先進(jìn)技術(shù)——第七屆全國(guó)壓力容器學(xué)術(shù)會(huì)議論文集[C];2009年
10 丁韋;宋宏圖;高振坤;黃辰奎;王貴山;黃銳;;貝氏體鋼轍叉電弧堆焊層的開裂分析[A];2009年全國(guó)失效分析學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)重要報(bào)紙文章 前4條
1 本報(bào)記者 柳祖林;用硬面技術(shù)為冶金備件“延壽降本”[N];中國(guó)冶金報(bào);2012年
2 林立恒;鐵路鋼軌電焊修理法[N];世界金屬導(dǎo)報(bào);2010年
3 本報(bào)記者 張年農(nóng)邋特約記者 李東風(fēng);“明珠”閃爍在河南濟(jì)鋼[N];現(xiàn)代物流報(bào);2008年
4 淮北順達(dá)商貿(mào)有限公司 趙艷軍;R6-40NoF風(fēng)機(jī)葉輪軸磨損的現(xiàn)場(chǎng)修復(fù)[N];中國(guó)建材報(bào);2007年
相關(guān)碩士學(xué)位論文 前10條
1 肖勇;堆焊層對(duì)連鑄輥熱機(jī)械行為的影響分析及模擬研究[D];武漢科技大學(xué);2012年
2 伍鋼;Q235及304不銹鋼表面CMT-TWIN堆焊鎳基合金工藝研究[D];南京理工大學(xué);2015年
3 陳宏;ZM5鑄造鎂合金激光表面修復(fù)與強(qiáng)化[D];上海交通大學(xué);2015年
4 王計(jì)輝;2219鋁合金交流TIG堆焊成型技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
5 彭思源;WC顆粒增強(qiáng)鐵基復(fù)合堆焊層性能研究[D];安徽建筑大學(xué);2015年
6 周云方;鈷基合金等離子粉末堆焊層的組織及性能研究[D];山東大學(xué);2016年
7 陳茂林;超聲沖擊對(duì)304不銹鋼堆焊層組織及性能的影響[D];大連理工大學(xué);2016年
8 盧江;雙機(jī)器人齒盤協(xié)同堆焊生產(chǎn)線關(guān)鍵技術(shù)研究[D];浙江大學(xué);2017年
9 魏雪;主蒸汽隔離閥用F91材料熱處理與焊接性能的研究[D];大連理工大學(xué);2016年
10 胡聰;雙絲間接電弧焊堆焊工藝及堆焊層耐蝕性能研究[D];山東大學(xué);2017年
,本文編號(hào):1917387
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1917387.html