釬焊金剛石薄壁鉆的制備與磨損研究
本文選題:釬焊金剛石薄壁鉆 + 磨損形式; 參考:《大連理工大學(xué)》2016年碩士論文
【摘要】:氮化硅工程陶瓷球閥以其優(yōu)異的耐磨性、高硬度、抗腐蝕性等特點(diǎn),廣泛地應(yīng)用于化工、冶金、核能、污水處理等工業(yè)領(lǐng)域。由于氮化硅工程陶瓷材料本身的高硬度和高脆性,對其進(jìn)行孔加工十分困難。目前,氮化硅工程陶瓷孔加工的首選方式是利用釬焊金剛石薄壁鉆對其進(jìn)行機(jī)械鉆削。本文通過對氮化硅工程陶瓷進(jìn)行孔加工試驗(yàn),開展了對釬焊金剛石薄壁鉆的制備與磨損研究。首先,在分析氮化硅工程陶瓷加工性能的基礎(chǔ)上,研究了釬焊金剛石薄壁鉆制備時(shí)金剛石磨粒、釬料及基體的選用原則,確定了釬焊金剛石薄壁鉆的制備方法,制定了制備的工藝流程。選用粒度為45/50的SMD金剛石磨粒、Ni基釬料和45鋼作為制備釬焊金剛石薄壁鉆的主體材料,釬焊方法為真空釬焊法。其次,采用SEM掃描電子顯微鏡與體視顯微鏡對孔加工后的釬焊金剛石薄壁鉆鉆頭進(jìn)行觀察,歸納了釬焊金剛石薄壁鉆的磨損形式,研究了其磨損機(jī)理和磨損過程。將釬焊金剛石薄壁鉆的磨損分為金剛石磨粒磨損與粘結(jié)劑磨損。金剛石的磨粒磨損形式分為剝落磨損、點(diǎn)蝕磨損、破碎磨損、磨粒脫落和磨粒磨平;粘結(jié)劑磨損形式分為粘結(jié)劑的小面積輕微脫落和大面積連續(xù)脫落。在加工初始階段,主要磨損形式為磨粒的破碎磨損、磨粒脫落及粘結(jié)劑的大面積脫落;在加工過渡階段,主要磨損形式為金剛石磨粒的磨平磨損和粘結(jié)劑的小面積脫落;在加工的最后,大部分金剛石磨粒磨平,鉆頭失效。最后,以10mm的加工深度為指標(biāo),分別研究了機(jī)床轉(zhuǎn)速、恒定鉆壓和鉆頭壁厚對釬焊金剛石薄壁鉆磨損的影響。提高機(jī)床轉(zhuǎn)速,金剛石磨粒的破碎磨損與磨平磨損比例增大,磨粒脫落比例幾乎不變;提高恒定鉆壓,金剛石磨粒的破碎磨損、磨粒脫落比例增大,磨粒磨平比例幾乎不變;增加鉆頭壁厚幾乎不會影響磨損程度。試驗(yàn)發(fā)現(xiàn),釬焊金剛石薄壁鉆在對氮化硅工程陶瓷孔加工時(shí),機(jī)床轉(zhuǎn)速選擇在710r/min,恒定鉆壓選擇705N,釬焊金剛石薄壁鉆的厚度選擇在1.5mm,能夠較好地控制磨損并得到較高的加工效率。
[Abstract]:Silicon nitride engineering ceramic ball valves are widely used in chemical, metallurgical, nuclear, sewage treatment and other industrial fields due to their excellent wear resistance, high hardness, corrosion resistance and so on. Due to the high hardness and brittleness of silicon nitride engineering ceramics, it is very difficult to process them. At present, the first choice of silicon nitride engineering ceramic hole machining is to use brazing diamond thin-wall drill to drill it. In this paper, the fabrication and wear of brazed diamond thin-walled drill were studied by hole processing test of silicon nitride engineering ceramics. Firstly, on the basis of analyzing the machining properties of silicon nitride engineering ceramics, the selection principle of diamond abrasive, brazing filler metal and matrix during the preparation of brazed diamond thin-walled drill is studied, and the preparation method of brazing diamond thin-walled drill is determined. The process of preparation was established. The SMD diamond grain size of 45 / 50 and 45% steel were selected as the main material for the brazing of diamond thin-walled drill. The brazing method was vacuum brazing. Secondly, SEM scanning electron microscope and stereoscopic microscope are used to observe the brazed diamond thin-walled drill bit after hole machining, and the wear patterns of brazed diamond thin-walled drill are summarized, and the wear mechanism and wear process are studied. The wear of brazed diamond thin-wall drill is divided into diamond abrasive wear and binder wear. The abrasive wear forms of diamond can be divided into spalling wear, pitting wear, crushing wear, abrasive shedding and abrasive grinding, while the wear forms of binder can be divided into small area and large area continuous shedding of binder. In the initial stage of processing, the main wear forms are the crushing wear of abrasive particles, the abrasive shedding and the large area exfoliation of binder, the main wear forms in the process transition stage are the abrasive wear of diamond particles and the small area shedding of binder. At the end of the process, most diamond grains are ground and the bit fails. Finally, the effects of machine speed, constant drilling pressure and bit wall thickness on the wear of brazed diamond thin-walled drill are studied based on the machining depth of 10mm. When the rotational speed of machine tool is increased, the ratio of crushing wear and grinding wear of diamond particles increases, and the ratio of abrasive particles falling off is almost unchanged, while the proportion of grinding particles is increased and the proportion of grinding particles flattening is almost unchanged when the constant drilling pressure is increased. Increasing the bit wall thickness will hardly affect the wear degree. It is found that the machine speed is 710r / min, the constant drilling pressure is 705N, the thickness of brazed diamond thin-walled drill is 1.5mm, and the wear can be controlled well and the processing efficiency is higher when brazing diamond thin-walled drill is machined to silicon nitride engineering ceramic hole, the machine speed is 710r / min, the constant drilling pressure is 705N, and the thickness of brazed diamond thin-wall drill is 1.5mm.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG454
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 方嘯虎;劉瑞平;溫簡杰;;釬焊金剛石工具制備的研究現(xiàn)狀和進(jìn)展[J];超硬材料工程;2009年02期
2 李澤印;陳建毅;黃輝;徐西鵬;;釬焊金剛石薄壁鉆加工工程陶瓷的試驗(yàn)研究[J];工具技術(shù);2006年09期
3 關(guān)硯聰,陳玉全,姚德明;Ag-Cu-Ti釬料釬焊單晶金剛石磨粒的研究[J];金剛石與磨料磨具工程;2005年03期
4 孟衛(wèi)如,徐可為,楊吉軍,南俊馬;金剛石工具真空釬焊釬料的適應(yīng)性[J];焊接學(xué)報(bào);2004年01期
5 蘇宏華,徐鴻鈞;金屬結(jié)合劑金剛石砂輪制造技術(shù)新發(fā)展[J];金剛石與磨料磨具工程;2003年04期
6 鄧朝暉,張璧,孫宗禹,周志雄;陶瓷磨削材料去除機(jī)理的研究進(jìn)展[J];中國機(jī)械工程;2002年18期
7 馬楚凡 ,王忠義,南俊馬 ,孟衛(wèi)如;一種牙科單層高溫釬焊金剛石砂輪的研制[J];金剛石與磨料磨具工程;2002年02期
8 于愛兵,田欣利,韓建華,林彬,劉家臣;應(yīng)用壓痕斷裂力學(xué)分析陶瓷材料的磨削加工[J];硅酸鹽通報(bào);2002年01期
9 李晨輝,熊惟皓,呂海波;Cr在金剛石工具胎體材料中的作用[J];粉末冶金技術(shù);2001年06期
10 于怡青,李遠(yuǎn),徐西鵬;建材加工用孕鑲金剛石工具的磨損與控制[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年09期
相關(guān)博士學(xué)位論文 前3條
1 丁蘭英;自潤滑多層有序釬焊金剛石工具技術(shù)研究[D];南京航空航天大學(xué);2014年
2 陳燕;高溫釬焊金剛石磨料熱損傷分析及其控制對策的基礎(chǔ)研究[D];南京航空航天大學(xué);2009年
3 楊俊德;金剛石鉆頭和金剛石鋸片磨損機(jī)理、設(shè)計(jì)及性能測試研究[D];中南大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 陸國棟;金剛石砂輪磨削碳化硅陶瓷砂輪磨損的試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2014年
2 張子煜;釬焊金剛石小直徑薄壁鉆頭的研制及其加工性能試驗(yàn)研究[D];南京航空航天大學(xué);2011年
3 葉安柱;陶瓷/玻璃纖維復(fù)合構(gòu)件的孔加工技術(shù)試驗(yàn)研究[D];南京理工大學(xué);2008年
4 劉華昌;高性能工程陶瓷孔加工的金剛石套鉆磨損特性研究[D];南京理工大學(xué);2007年
,本文編號:1900204
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1900204.html