天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 鑄造論文 >

FCC結(jié)構(gòu)和HCP結(jié)構(gòu)金屬表面機械研磨過程的比較

發(fā)布時間:2018-05-14 06:38

  本文選題:表面納米化 + 表面合金化。 參考:《太原理工大學》2016年碩士論文


【摘要】:近年來,具有優(yōu)異的力學性能和獨特的微觀結(jié)構(gòu)的納米材料已經(jīng)成為人們的研究熱點。材料表面納米化是在材料表面制備出具有一定厚度的納米結(jié)構(gòu)表層,通過改變其組織結(jié)構(gòu)以及應(yīng)力狀態(tài),使材料的整體力學性能得到改善的方法。表面機械合金化(SMA)技術(shù)來源于表面納米化技術(shù),是表面強烈塑性變形(SPD)的另一分支領(lǐng)域,是在進行表面機械研磨的同時引入不同于基體的成分,形成具有納米梯度結(jié)構(gòu)的復合表面,以滿足材料表面多樣性的要求。本文通過實驗對比FCC結(jié)構(gòu)金屬(Cu)和HCP結(jié)構(gòu)金屬(Mg)機械研磨過程中參數(shù)配比問題,并探討其表面納米化和合金化過程的區(qū)別,以及期望制備出表面性能更好的納米結(jié)構(gòu)層,研究了合金化過程中原子擴散的問題。(1)由于純銅和純鎂晶體結(jié)構(gòu)不同,并且其層錯能也不同,導致塑性變形過程機理也不相同,純銅變形機理包括(a)位錯纏結(jié)和位錯墻在原始粗晶以及細化胞中演變、(b)形成小角度亞晶界、(c)小角度亞晶界轉(zhuǎn)化為大角度亞晶界及納米晶三個步驟,位錯機制對塑性變形過程起主要貢獻;純鎂變形機理包括(a)應(yīng)力應(yīng)變誘發(fā)孿晶結(jié)構(gòu)形成、(b)孿晶間的交互作用發(fā)展為位錯的纏結(jié)、(c)動態(tài)再結(jié)晶過程三個步驟,塑性變形過程初期以孿生交互機制為主,隨著應(yīng)力應(yīng)變持續(xù)作用,位錯機制對變形過程起主要作用。(2)在相同納米化體系中,彈丸尺寸增大對納米化效果起促進作用,塑性變形層厚度增加,納米晶尺寸減小。特別是純鎂基體,8 mm的彈丸作用下,表層擇優(yōu)取向面發(fā)生變化,由原先的(101)晶面擇優(yōu)變?yōu)?002)晶面和(101)晶面共同擇優(yōu)。(3)在相同納米化體系中,smat時間增長對納米化效果(深度及晶粒大小)起促進作用,塑性變形層厚度明增加,納米晶尺寸減小,晶格畸變嚴重。(4)將表面納米化法和表面機械合金化法結(jié)合,在純cu、純mg表面得到均勻、連續(xù)的ni涂層和cu-ni、mg-ni復合涂層。這一種新的方法對原位形成表面復合涂層提供了實驗指導。(5)經(jīng)過表面納米化預處理30min的cu板、mg板合金化效率明顯高于未處理過的cu板、mg板,合金化4h后,預處理的樣品ni涂層厚度可以分別達到40μm和60μm,分別是未預處理樣品的8和6倍。涂層的厚度、均勻性和連續(xù)性隨合金化時間延長而提高。(6)經(jīng)過表面合金化后樣品表面硬度得到很大的提高,純銅樣品表面硬度從98hv提高到280hv,提高2.8倍;純鎂樣品表面硬度從45hv提高到340hv,提高7.5倍。(7)涂層的形成主要經(jīng)歷了三個階段:粉體與基體機械結(jié)合、形成冷焊層和互擴散(擴散)過程。并且經(jīng)過預處理后,基體表層發(fā)生嚴重的塑性變形,導致表層呈現(xiàn)凹凸不平的形貌,表面積增大,表面硬度提高,促進合金涂層形成。(8)在塑性變形過程中,原始粗晶由于應(yīng)力應(yīng)變作用發(fā)生嚴重扭折,細化,晶粒之間存在大量晶界特別是三岔晶界,晶粒內(nèi)部存在大量位錯線等缺陷。(9)在塑性變形過程中,由于晶界、位錯等缺陷增多,局部溫度升高,Ni以原子的形式在純銅、純鎂基體中擴散。
[Abstract]:In recent years, nanomaterials with excellent mechanical properties and unique microstructures have become a hot spot of research. The surface nanocrystallization of materials is a method to improve the overall mechanical properties of the material by changing the structure and stress state of the surface of the material with a certain thickness. Surface mechanical alloying (SMA) technology is derived from surface nanoscale technology. It is another branch of surface strong plastic deformation (SPD). It is introduced into a composite surface with a nano gradient structure to meet the requirements of the material surface diversity. In this paper, a comparison of FCC is made in this paper. The problem of parameter ratio in mechanical lapping of structural metal (Cu) and HCP structure metal (Mg), and the difference between the surface nanoscale and alloying process, as well as the preparation of the nano structure layer with better surface properties, the problem of atomic diffusion in the process of alloying. (1) the structure of pure copper and pure magnesium is different and its layer is wrong. The mechanism of plastic deformation process is different, and the deformation mechanism of the plastic deformation is different. The deformation mechanism of pure copper includes (a) dislocation entanglement and dislocation wall in the original coarse grain and refined cell. (b) formation of small angle subgrain boundary, (c) small angle subgrain boundary into large angle subgrain boundary and nanocrystalline step, dislocation mechanism plays the main contribution to the plastic deformation process. The mechanism of pure magnesium deformation includes (a) the formation of stress strain induced twin structure, and the interaction between (b) twins develops into dislocation entanglement, (c) the dynamic recrystallization process of (c), the early stage of the plastic deformation process is twin interaction mechanism, with the continuous action of stress and strain, the dislocation mechanism plays a major role in the deformation process. (2) in the same nanometer In the system, the size of the projectile increases to the nanocrystalline effect, the thickness of the plastic deformation layer increases and the size of nanocrystalline decreases. Especially the pure magnesium matrix, under the action of 8 mm projectiles, the preferential orientation surface of the surface changes from the original (101) crystal surface to (002) crystal surface and (101) crystal surface together. (3) in the same nanoscale system, s The time growth of mat promotes the nanocrystalline effect (depth and grain size), the thickness of the plastic deformation layer increases, the size of the nanocrystalline decreases, and the lattice distortion is serious. (4) the surface nanocrystallization and the surface mechanical alloying method are combined, the pure Cu, the pure Mg surface is uniform, the continuous Ni coating and the Cu-Ni, Mg-Ni composite coating. The method provides experimental guidance for the in-situ surface composite coating. (5) after the surface nanocrystalline pretreatment of 30min Cu plate, the alloying efficiency of the Mg plate is obviously higher than that of the untreated Cu plate. After the Mg plate and the alloying 4h, the thickness of the pre treated sample Ni coating can reach 40 Mu and 60 u respectively, respectively, 8 and 6 times of the untreated samples. The thickness of the coating, respectively. The uniformity and continuity increased with the alloying time. (6) the surface hardness of the sample was greatly improved after the surface alloying. The surface hardness of pure copper samples increased from 98hv to 280hv, and increased by 2.8 times. The surface hardness of pure magnesium samples increased from 45hv to 340hv, up to 7.5 times. (7) the formation of the coating mainly experienced three stages: powder and base The cold welding layer and diffusion (diffusion) process are formed by body mechanical combination. And after pretreatment, the surface of the matrix has serious plastic deformation, which leads to uneven surface appearance, the surface area increases, the surface hardness is increased, and the alloy coating is promoted. (8) during the plastic deformation process, the original coarse grain is serious due to the stress and strain effect. There are a large number of grain boundaries, especially the three fork grain boundaries, and there are a large number of dislocation lines in the grain. (9) in the process of plastic deformation, due to the increase of grain boundary, dislocation and other defects, the local temperature increases, and Ni diffusion in pure copper and pure magnesium matrix in the form of atoms.

【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TG580.68

【參考文獻】

相關(guān)期刊論文 前10條

1 侯利鋒;王磊;衛(wèi)英慧;郭春麗;李寶東;;純銅表面機械研磨輔助制備鎳合金層[J];材料熱處理學報;2014年01期

2 延歡歡;侯利鋒;衛(wèi)英慧;范薇;杜華云;郭春麗;;強烈塑性變形誘導純鐵表面原位合金化[J];材料熱處理學報;2013年S2期

3 李寶東;侯利鋒;衛(wèi)英慧;郭春麗;;表面機械研磨輔助Ni_3Al在純鎂表面擴散行為研究[J];熱加工工藝;2013年22期

4 杜華云;安艷麗;衛(wèi)英慧;李栩;林萬明;侯利鋒;;純鐵表面機械研磨法制備鐵鎳合金及耐磨性[J];材料熱處理學報;2013年11期

5 沈以赴;李永燦;陳成;馮曉梅;;Al_2O_3陶瓷表面機械合金化制備銅涂層研究[J];南京航空航天大學學報;2012年05期

6 牛娜;衛(wèi)英慧;林萬明;侯利鋒;杜華云;;表面機械研磨處理對Cu-4Ti合金組織及力學性能的影響[J];金屬熱處理;2012年08期

7 李玉榮;林萬明;衛(wèi)英慧;侯利鋒;杜華云;;表面機械研磨處理對Cu-10wt%Ni合金組織及性能的影響[J];功能材料;2011年S4期

8 蘇娟;衛(wèi)英慧;林萬明;侯利鋒;杜華云;;時效硬化Cu-2Ti合金表面納米化過程研究[J];稀有金屬材料與工程;2011年S2期

9 呂壽丹;王鎮(zhèn)波;盧柯;;表面納米化AISI H13鋼的滲鉻處理及其耐磨性[J];寶鋼技術(shù);2011年02期

10 林萬明;衛(wèi)英慧;杜華云;畢海香;侯利鋒;;純銅表面納米化對鎳擴散的影響[J];金屬熱處理;2009年11期

相關(guān)博士學位論文 前2條

1 林萬明;銅及銅合金表面納米化及其改性研究[D];太原理工大學;2011年

2 杜華云;鐵基合金表面納米化過程及相關(guān)金屬學問題研究[D];太原理工大學;2010年

相關(guān)碩士學位論文 前3條

1 延歡歡;純鐵表面原位合金化的研究[D];太原理工大學;2014年

2 王磊;純銅表面機械研磨輔助合金化的研究[D];太原理工大學;2013年

3 畢海香;純銅表面納米化及其擴散性能研究[D];太原理工大學;2008年

,

本文編號:1886747

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1886747.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c03c1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产精品香蕉免费手机视频| 亚洲午夜av一区二区| 亚洲国产一级片在线观看 | 国产精品不卡高清在线观看| 久久久精品区二区三区| 国产又粗又猛又爽又黄| 久久本道综合色狠狠五月| 激情中文字幕在线观看| 五月天六月激情联盟网| 中文字日产幕码三区国产| 欧美成人久久久免费播放| 嫩草国产福利视频一区二区| 经典欧美熟女激情综合网| 国产成人精品一区二三区在线观看| 开心五月激情综合婷婷色| 日韩精品少妇人妻一区二区| 欧美一区二区三区在线播放| 日本少妇中文字幕不卡视频 | 中国美女草逼一级黄片视频| 欧美日韩成人在线一区| 欧美日韩亚洲综合国产人| 国产在线一区二区免费| 日本妇女高清一区二区三区| 中文字幕日韩欧美理伦片| 成人日韩在线播放视频| 国产色一区二区三区精品视频 | 日韩精品成区中文字幕| 精品一区二区三区中文字幕| 欧洲自拍偷拍一区二区| 99久久精品久久免费| 国产成人精品午夜福利| 大尺度剧情国产在线视频| 欧美高潮喷吹一区二区| 黑丝国产精品一区二区| 国产日韩久久精品一区| 永久福利盒子日韩日韩| 五月婷婷六月丁香狠狠| 国产偷拍盗摄一区二区| 亚洲免费黄色高清在线观看| 日韩黄色一级片免费收看| 九九热精品视频免费在线播放|