高合金軸承鋼接觸表面效應(yīng)與疲勞行為的研究
本文選題:軸承鋼 + 滾動接觸疲勞; 參考:《昆明理工大學(xué)》2017年碩士論文
【摘要】:采用雙真空冶煉工藝(VAM-VAR)生產(chǎn)的Cr4Mo4V軸承鋼,具有較好的高溫硬度和杰出的滾動接觸疲勞強度,被廣泛應(yīng)用于飛機發(fā)動機軸承。滾動軸承通常的失效類型為疲勞剝落,但是在高性能飛機發(fā)動機軸承中環(huán)向應(yīng)力加劇進而造成外圈的斷裂,鋼中未固溶碳化物影響軸承疲勞損傷和加工性能。本文探究了Cr4Mo4V軸承鋼在滾動接觸疲勞過程中的性能變化,利用有限元模擬了滾動接觸疲勞加載下的球棒滾動接觸應(yīng)力分布,通過旋轉(zhuǎn)彎曲疲勞試驗研究了未固溶碳化物對Cr4Mo4V軸承鋼疲勞性能的影響。(1)通過球棒滾動接觸疲勞(RCF)試驗機,研究了 Cr4Mo4V軸承鋼在4050潤滑油潤滑和0.18滑滾比條件下的滾動接觸疲勞和磨損性能。結(jié)果表明:Cr4Mo4V鋼的應(yīng)力-壽命(S-N)曲線數(shù)據(jù)分散性較大,疲勞壽命隨著應(yīng)力增加呈下降趨勢。Cr4Mo4V鋼滾動接觸磨損主要為磨料磨損,黏著磨損和疲勞磨損,隨著應(yīng)力和時間增加磨損體積增加,滾道凹槽深度達到17 μm。通過光學(xué)顯微鏡(OM)和掃描電子顯微鏡(SEM)觀察試樣棒剖面與滾道交界處疲勞裂紋,發(fā)現(xiàn)疲勞破壞類型主要有兩種:起源于表面的剝落(SOF)和起源于白蝕區(qū)的剝落(WSF)。通過滾道徑向切割拋光酸蝕顯示Cr4Mo4V鋼滾動接觸疲勞影響區(qū),隨著應(yīng)力和循環(huán)接觸次數(shù)的增加,在次表層依次發(fā)現(xiàn)黑蝕區(qū)(DER)、白蝕區(qū)(WEA)和蝴蝶組織(BW)。表面碳化物的剝落坑,黏著磨損和疲勞磨損的凹坑導(dǎo)致了表面起裂,白蝕區(qū)和蝴蝶組織中的碳化物和夾雜導(dǎo)致微裂紋的產(chǎn)生,鏈狀碳化物使裂紋往深處擴展。(2)在考慮試樣尺寸,次表面應(yīng)力影響區(qū)和碳化物尺寸下,采用兩步有限元模擬方法及“全局模型-子模型”研究球棒滾動接觸疲勞。在最大接觸接應(yīng)力4GPa下,次表面塑性變形區(qū)域為50μm到150μm。碳化物導(dǎo)致局部屈服。(3)在應(yīng)力比R=-1,試驗頻率為85Hz和室溫下測試了 Cr4Mo4V軸承鋼的旋轉(zhuǎn)彎曲疲勞性能。利用升降法測得Cr4Mo4V鋼光滑圓柱形試樣的安全疲勞極限為1019MPa。光滑漏斗狀試樣的安全疲勞極限為1153MPa。Cr4Mo4V鋼S-N曲線數(shù)據(jù)呈下降趨勢且分散性較大。光滑圓柱形試樣斷口觀察表明,發(fā)現(xiàn)起裂類型有5種,即表面缺陷起裂,近表面碳化物起裂,近表面非金屬夾雜物起裂,內(nèi)部非金屬夾雜物起裂和內(nèi)部碳化物起裂。光滑漏斗狀試樣斷口觀察顯示破壞模式為內(nèi)部碳化物起裂和氫致斷裂。內(nèi)部起裂斷口有“魚眼”特征;內(nèi)部起裂源碳化物周圍形成GBF區(qū)。Cr4Mo4V軸承鋼中碳化物在循環(huán)應(yīng)力下作用下發(fā)生破碎,破碎的碳化物加大了裂紋擴展速率。使用關(guān)鍵碳化物體積密度能夠定量地分析碳化物尺寸對近表面起裂的影響。通過缺陷所在位置的名義應(yīng)力幅與缺陷疲勞極限強度的比值分析了夾雜物尺寸對疲勞壽命的影響。
[Abstract]:Cr4Mo4V bearing steel produced by double vacuum smelting process (VAM-VAR) has good high temperature hardness and excellent rolling contact fatigue strength, so it is widely used in aeroengine bearings. Generally, the failure type of rolling bearing is fatigue spalling, but in the high performance aircraft engine bearing, the stress in the ring direction is aggravated and the outer ring is broken. The failure of the steel can affect the fatigue damage and the processing performance of the bearing. In this paper, the behavior change of Cr4Mo4V bearing steel during rolling contact fatigue is studied. The rolling contact stress distribution of ball rod under rolling contact fatigue loading is simulated by finite element method. The effect of undissolved carbides on fatigue properties of Cr4Mo4V bearing steel was studied by rotating bending fatigue test. The rolling contact fatigue and wear properties of Cr4Mo4V bearing steel under the conditions of 4050 lubricating oil lubrication and 0.18 sliding roll ratio were studied. The results show that the stress-life curve data of the steel w Cr4Mo4V are dispersive, and the fatigue life of the steel decreases with the increase of stress. The rolling contact wear of Cr4Mo4V steel is mainly abrasive wear, adhesion wear and fatigue wear. With the increase of stress and time, the raceway groove depth increases to 17 渭 m. By means of optical microscope (OM) and scanning electron microscopy (SEM), the fatigue cracks at the interface between the rod profile and the raceway were observed. It was found that there are two main types of fatigue failure: surface spalling (SOF) and denudation (WSF) originating in the white corrosion zone. The raceway radial cutting and polishing acid etching shows the rolling contact fatigue zone of Cr4Mo4V steel. With the increase of stress and cyclic contact times, the black corrosion zone (DERA), the white etching zone (WEAA) and the butterfly tissue (BW) are found in turn in the subsurface layer. Surface carbides spalling pits, adhesion wear and fatigue wear pits lead to surface initiation, carbides and inclusions in white etching zones and butterflies lead to microcracks, chain-like carbides cause cracks to spread deep into the depths of cracks. Two step finite element simulation method and "global model-sub-model" are used to study the rolling contact fatigue of the bat in the sub-surface stress affected zone and carbide size. The plastic deformation region of the subsurface is from 50 渭 m to 150 渭 m under the maximum contact bonding force (4GPa). The rotational bending fatigue properties of Cr4Mo4V bearing steel were tested at stress ratio Rn-1, test frequency of 85Hz and room temperature. The safety fatigue limit of smooth cylindrical specimens of Cr4Mo4V steel was determined to be 1019 MPA by means of lifting method. The safety fatigue limit of smooth funnel specimen is the S-N curve data of 1153MPa.Cr4Mo4V steel. The fracture observation of smooth cylindrical specimen shows that there are five types of initiation cracks, namely, surface defect initiation, near-surface carbides initiation, near-surface non-metallic inclusions initiation, internal non-metallic inclusions initiation and internal carbides initiation. The fracture of smooth funnel specimen shows that the fracture mode is internal carbides initiation and hydrogen-induced fracture. The fracture surface of internal crack has the characteristic of "fish-hole", and the carbides in GBF zone. Cr4Mo4V bearing steel are broken under cyclic stress, and the cracked carbides increase the rate of crack propagation. The effect of carbides size on the initiation of near surface crack can be quantitatively analyzed by using the key carbides bulk density. The influence of the size of inclusions on fatigue life is analyzed by the ratio of nominal stress amplitude of defect location to fatigue ultimate strength of defects.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG142.1
【相似文獻】
相關(guān)期刊論文 前6條
1 飯島一昭;木川竹彥;吉村照夫;黑柳一夫;;軸承鋼、車輪鋼和滲碳齒輪鋼的滾動接觸疲勞損壞[J];國外機車車輛工藝;1980年03期
2 李旭東;張仕朝;龐長濤;;材料滾動接觸疲勞試驗研究[J];航空精密制造技術(shù);2011年03期
3 陳書贏;王海斗;徐濱士;康嘉杰;;熱噴涂層滾動接觸疲勞壽命演變規(guī)律研究進展[J];機械工程學(xué)報;2014年08期
4 李錦峰,趙紅平,施惠基,馮西橋;Cr4Mo4V鋼表面預(yù)制缺陷對滾動接觸疲勞性能的影響[J];航空材料學(xué)報;2005年06期
5 齊效文;楊育林;;超硬涂層零件滾動接觸疲勞加速實驗方法研究[J];潤滑與密封;2007年08期
6 劉洪喜;李小棒;李琪軍;;氮等離子體浸沒離子注入技術(shù)改善軸承鋼滾動接觸疲勞壽命和機械性能的研究[J];真空科學(xué)與技術(shù)學(xué)報;2007年01期
相關(guān)重要報紙文章 前1條
1 楊雄飛;利用優(yōu)質(zhì)鋼軌提高英國鐵路網(wǎng)鋼軌滾動接觸疲勞性能[N];世界金屬導(dǎo)報;2013年
相關(guān)博士學(xué)位論文 前2條
1 楊皖實;形態(tài)、結(jié)構(gòu)、材料耦元對合金鋼滾動接觸疲勞磨損性能的影響[D];吉林大學(xué);2016年
2 于榮泉;車輪踏面滾動接觸疲勞損傷研究[D];北京交通大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 陳冬冬;基于聲發(fā)射的軸承滾動接觸疲勞在線檢測[D];燕山大學(xué);2015年
2 盧純;高速動車組車輪踏面滾動接觸疲勞的萌生機理研究[D];西南交通大學(xué);2015年
3 秦奮起;微觀粗糙表面的數(shù)值模擬及其對滾動接觸疲勞壽命的影響[D];哈爾濱工業(yè)大學(xué);2015年
4 楊建;非線性穩(wěn)態(tài)曲線通過輪軌滾動接觸疲勞壽命研究[D];遼寧科技大學(xué);2016年
5 裴桃林;基于聲發(fā)射的軸承滾動接觸疲勞量化診斷技術(shù)研究[D];燕山大學(xué);2016年
6 溫邦;地鐵車輪踏面滾動接觸疲勞形成機理及對策研究[D];西南交通大學(xué);2017年
7 郭軍;高合金軸承鋼接觸表面效應(yīng)與疲勞行為的研究[D];昆明理工大學(xué);2017年
8 盧麗鵑;1070鋼滾動接觸疲勞啟裂、擴展機制及數(shù)值模擬研究[D];浙江工業(yè)大學(xué);2014年
9 張偉;鋼軌滾動接觸疲勞試驗研究[D];西南交通大學(xué);2005年
10 張仁進;熱處理工藝對轍叉用新型貝氏體鋼沖擊韌性和滾動接觸疲勞性能的影響[D];西華大學(xué);2015年
,本文編號:1880761
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1880761.html