基于磁控旋轉(zhuǎn)電弧傳感的堆焊層曲面重建關(guān)鍵技術(shù)研究
本文選題:磁控旋轉(zhuǎn)堆焊?jìng)鞲衅?/strong> + 焊道自動(dòng)排布; 參考:《湘潭大學(xué)》2017年碩士論文
【摘要】:焊接自動(dòng)化技術(shù)是工業(yè)技術(shù)快速發(fā)展的推動(dòng)因素之一,世界各國(guó)對(duì)工業(yè)技術(shù)的重視程度不斷加大,為焊接自動(dòng)化技術(shù)的發(fā)展揭開(kāi)了新的篇章。堆焊是一種常用的零件修復(fù)和材料表面改性技術(shù),具有廣泛的應(yīng)用前景,但是現(xiàn)階段堆焊的自動(dòng)化程度較低,整體質(zhì)量不高,缺乏一種能有效提高堆焊生產(chǎn)過(guò)程自動(dòng)化程度的方法。本文采用磁控旋轉(zhuǎn)堆焊?jìng)鞲衅鬟M(jìn)行數(shù)據(jù)采樣,對(duì)相關(guān)技術(shù)理論進(jìn)行了研究,解決了堆焊層曲面重建的關(guān)鍵性問(wèn)題,提出一種基于磁控旋轉(zhuǎn)電弧傳感的堆焊層曲面重建方法,用于焊道排布偏差識(shí)別與控制,實(shí)現(xiàn)焊道的自動(dòng)排布,具體內(nèi)容如下:(1)設(shè)計(jì)出一種滿足堆焊層焊道坡口采樣要求的磁控旋轉(zhuǎn)堆焊?jìng)鞲衅。通過(guò)對(duì)電弧在可控磁場(chǎng)內(nèi)的運(yùn)動(dòng)形態(tài)進(jìn)行分析,確定了磁控電弧旋轉(zhuǎn)的采樣方式。針對(duì)堆焊條件下對(duì)焊接傳感器的要求,經(jīng)有限元磁場(chǎng)仿真分析,設(shè)計(jì)出一種可用于堆焊層曲面特征信息采集的磁控旋轉(zhuǎn)堆焊?jìng)鞲衅鳌?2)求解焊道坡口的弧長(zhǎng)數(shù)學(xué)模型,仿真分析不同偏差時(shí)信號(hào)的變化情況。通過(guò)分析磁控旋轉(zhuǎn)堆焊?jìng)鞲衅鞯牟蓸訖C(jī)理和堆焊不同焊道排布策略對(duì)電弧形態(tài)的影響作用,建立弧長(zhǎng)數(shù)學(xué)模型,再根據(jù)磁控旋轉(zhuǎn)堆焊系統(tǒng)傳遞模型,對(duì)不同偏差情況的電流信號(hào)進(jìn)行仿真分析,總結(jié)出堆焊層焊道坡口形貌變化與電流信號(hào)的對(duì)應(yīng)關(guān)系。(3)提出一種基于采樣周期的分區(qū)間增長(zhǎng)Delaunay三角剖分的堆焊層曲面重建方法,重建堆焊層焊道坡口的三維曲面模型,進(jìn)行焊道排布偏差識(shí)別與控制。根據(jù)磁控旋轉(zhuǎn)堆焊?jìng)鞲衅鞯膫鞲心P秃突¢L(zhǎng)數(shù)學(xué)模型,提取出采樣數(shù)據(jù)點(diǎn)的信息,借助MATLAB軟件的科學(xué)計(jì)算和可視化圖形分析功能,將采樣數(shù)據(jù)點(diǎn)按采樣周期不同進(jìn)行分區(qū)間Delaunay三角剖分,建立堆焊層的三角網(wǎng)格模型,加入等效高度模型后進(jìn)行堆焊層曲面重建。通過(guò)改進(jìn)Kriging插值算法平滑處理,解決了曲面模型細(xì)節(jié)特征表述模糊和平滑度不足的問(wèn)題,再通過(guò)上位機(jī)調(diào)用GPU內(nèi)核并行運(yùn)算解決了實(shí)時(shí)性低的問(wèn)題,重建堆焊層焊道坡口的三維曲面模型,用于堆焊焊道排布的偏差識(shí)別與控制,實(shí)現(xiàn)焊道的自動(dòng)排布。(4)通過(guò)進(jìn)行磁控旋轉(zhuǎn)電弧堆焊試驗(yàn),驗(yàn)證堆焊焊道的自動(dòng)排布效果。根據(jù)提出的堆焊層曲面重建方法,搭建磁控堆焊試驗(yàn)平臺(tái)進(jìn)行焊接試驗(yàn),結(jié)果表明本文所述方法焊道排布偏差識(shí)精度高,焊道自動(dòng)排布效果好。
[Abstract]:Welding automation technology is one of the driving factors for the rapid development of industrial technology. The importance of industrial technology is increasing in the world, which opens a new chapter for the development of welding automation technology. Surfacing welding is a commonly used part repair and material surface modification technology, which has a wide application prospect, but at present, the automation degree of surfacing welding is low, and the overall quality is not high. There is a lack of an effective method to improve the automation of surfacing production process. In this paper, the magnetic control rotating surfacing sensor is used to sample the data, and the related technology theory is studied. The key problem of surface reconstruction of surfacing layer is solved, and a method of surface reconstruction of surfacing layer based on magnetic control rotating arc sensor is proposed. It is used to identify and control the distribution deviation of welding pipe and to realize the automatic layout of welding pipe. The concrete contents are as follows: 1) A magnetic control rotating surfacing welding sensor is designed to meet the requirements of groove sampling in surfacing layer. The sampling mode of the arc rotation is determined by analyzing the movement of the arc in the controlled magnetic field. According to the requirement of welding sensor under surfacing condition, a magnetic control rotating surfacing sensor. 2) which can be used to collect the characteristic information of surfacing layer surface, is designed by finite element magnetic field simulation analysis to solve the arc length mathematical model of welding path groove. The variation of signals with different deviations is analyzed by simulation. By analyzing the sampling mechanism of the magnetic control rotating surfacing welding sensor and the influence of different laying strategies of the surfacing welding on the arc shape, the mathematical model of arc length is established, and then according to the transfer model of the magnetic control rotating surfacing welding system, the mathematical model of arc length is established. Based on the simulation analysis of the current signals with different deviations, the corresponding relationship between the groove shape change and the current signal of the surfacing welding layer is summarized. A surfacing layer surface reconstruction method based on sampling period is proposed, which is based on the interval growth Delaunay triangulation of the surfacing layer. The 3D curved surface model of the bevel of surfacing layer was reconstructed to identify and control the distribution deviation. According to the sensor model and arc length mathematical model of magnetically controlled rotating surfacing welding sensor, the information of sampling data points is extracted, and the functions of scientific calculation and visual graphic analysis of MATLAB software are used. The sampling data points are divided into Delaunay triangulation according to different sampling periods. The triangular mesh model of surfacing layer is established and the surface of surfacing layer is reconstructed by adding equivalent height model. By improving the smoothing of Kriging interpolation algorithm, the problems of fuzzy representation and lack of smoothness of the detailed features of the surface model are solved, and the problem of low real-time performance is solved by calling the GPU kernel parallel operation on the host computer. The 3D curved surface model of the bevel of surfacing layer is reconstructed, which is used to identify and control the deviation of the surfacing welding pipe placement, and to realize the automatic placement of the welding pipe. The magnetic controlled rotating arc surfacing test is carried out to verify the effect of the automatic placement of the surfacing welding pipe. According to the surface reconstruction method of surfacing layer, a magnetic controlled surfacing test platform is built for welding test. The results show that the method described in this paper has high recognition accuracy and good automatic placement effect.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG455
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王東坡;龔寶明;吳世品;張海;馮延焉;;焊接接頭與結(jié)構(gòu)疲勞延壽技術(shù)研究進(jìn)展綜述[J];華東交通大學(xué)學(xué)報(bào);2016年06期
2 鄒焱飚;王研博;周衛(wèi)林;;焊縫跟蹤應(yīng)用的線激光視覺(jué)伺服控制系統(tǒng)[J];光學(xué)精密工程;2016年11期
3 袁小翠;吳祿慎;陳華偉;;尖銳特征曲面散亂點(diǎn)云法向估計(jì)[J];光學(xué)精密工程;2016年10期
4 王立濤;施立發(fā);夏雪蘭;張喬英;;高效電機(jī)用硅鋼的織構(gòu)特征及電機(jī)性能[J];鋼鐵研究學(xué)報(bào);2016年10期
5 趙新中;陶永耀;賀佩;石敏;;一種基于小波鄰域的半軟閾值去噪算法[J];國(guó)外電子測(cè)量技術(shù);2016年04期
6 李國(guó)俊;朱光耀;李宗春;李偉;孫元超;;利用Voronoi協(xié)方差矩陣重建隱式曲面[J];中國(guó)圖象圖形學(xué)報(bào);2016年03期
7 尤磊;唐守正;宋新宇;;以優(yōu)先點(diǎn)為中心的Delaunay三角網(wǎng)生長(zhǎng)算法[J];中國(guó)圖象圖形學(xué)報(bào);2016年01期
8 郭海榮;邢卓;;帶過(guò)渡層雙相不銹鋼帶極電渣堆焊管板工藝[J];壓力容器;2015年12期
9 王卉;黃玉清;;基于拉普拉斯算子的三角網(wǎng)格模型的平滑與壓縮算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2015年12期
10 孫勁光;周勃;;曲線約束Delaunay三角剖分及在地形構(gòu)建中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用與軟件;2015年12期
相關(guān)碩士學(xué)位論文 前2條
1 蔡元菲;快速三維克里金插值方法研究及實(shí)現(xiàn)[D];電子科技大學(xué);2013年
2 劉志剛;逆向工程中三角剖分技術(shù)研究[D];華中科技大學(xué);2005年
,本文編號(hào):1868416
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1868416.html