面向鍛造生產(chǎn)的節(jié)能調(diào)度研究
本文選題:鍛造 + 生產(chǎn)調(diào)度 ; 參考:《南京理工大學(xué)》2017年碩士論文
【摘要】:能源問(wèn)題是當(dāng)今社會(huì)的一個(gè)熱點(diǎn)問(wèn)題,隨著對(duì)能源需求量的增大,能源不足的問(wèn)題也越來(lái)越嚴(yán)重,節(jié)能的研究顯得至關(guān)重要。制造企業(yè)作為能源最大的消費(fèi)者,更是要承擔(dān)節(jié)能的重任,生產(chǎn)加工過(guò)程是制造企業(yè)實(shí)現(xiàn)節(jié)能時(shí)主要考慮的環(huán)節(jié),節(jié)能的實(shí)現(xiàn)有多種途徑,但是關(guān)于通過(guò)調(diào)度的手段來(lái)實(shí)現(xiàn)節(jié)能的研究目前還比較少。本文以鍛造行業(yè)的生產(chǎn)過(guò)程為研究對(duì)象,研究其調(diào)度方法,保證了生產(chǎn)的高效率,并且考慮了節(jié)能的目標(biāo),順應(yīng)了我國(guó)的可持續(xù)發(fā)展戰(zhàn)略。本文圍繞鍛造生產(chǎn)過(guò)程中的三個(gè)環(huán)節(jié)來(lái)展開(kāi)了節(jié)能調(diào)度研究,分別是鍛造加熱環(huán)節(jié)、鍛打環(huán)節(jié)和鍛造熱處理環(huán)節(jié),在每個(gè)環(huán)節(jié)中都提出了該環(huán)節(jié)目前存在的問(wèn)題,針對(duì)這些問(wèn)題建立了數(shù)學(xué)模型,并且對(duì)這些模型采用了相關(guān)的算法或處理方法。鍛造加熱環(huán)節(jié)中,首先對(duì)鍛件進(jìn)行了聚類和聚類組合處理,然后面向加熱爐建立了以保溫等待時(shí)間和裝爐容量差率為目標(biāo)的數(shù)學(xué)模型,針對(duì)建立的數(shù)學(xué)模型設(shè)計(jì)了改進(jìn)的遺傳算法,并結(jié)合實(shí)際案例分析了算法結(jié)果,成功實(shí)現(xiàn)了節(jié)能的目標(biāo)。鍛打環(huán)節(jié)中,將節(jié)能調(diào)度問(wèn)題簡(jiǎn)述為多鍛件與多鍛打設(shè)備間的匹配問(wèn)題。首先,建立了以回爐次數(shù)為目標(biāo)的調(diào)度模型,并求解;接著,以回爐次數(shù)為目標(biāo)的求解結(jié)果為約束,建立以鍛打工時(shí)為目標(biāo)的調(diào)度模型,并求解;然后,以鍛打工時(shí)為目標(biāo)的求解結(jié)果為約束,建立以換作時(shí)間為目標(biāo)的調(diào)度模型,并求解;最后,以換作時(shí)間為目標(biāo)的求解結(jié)果為約束,建立混合鍛打調(diào)度模型,并設(shè)計(jì)了相應(yīng)的解決方法,且結(jié)合實(shí)際案例驗(yàn)證了方法的可行性。鍛造熱處理環(huán)節(jié)中,首先優(yōu)化了余熱熱處理工藝,然后針對(duì)熱處理環(huán)節(jié)中的淬火與回火工藝,建立了余熱淬火模型和余熱回火模型,最后也同樣提出了對(duì)應(yīng)模型的解決方法,并且結(jié)合了實(shí)際案例驗(yàn)證了方法的可行性。最后結(jié)合前面研究的調(diào)度方法設(shè)計(jì)并開(kāi)發(fā)了面向節(jié)能的鍛造生產(chǎn)調(diào)度系統(tǒng)。給出了系統(tǒng)的總體設(shè)計(jì),對(duì)各功能模塊以及數(shù)據(jù)庫(kù)表單進(jìn)行了設(shè)計(jì),展示了系統(tǒng)開(kāi)發(fā)完善后的功能以及運(yùn)行流程。
[Abstract]:Energy problem is a hot issue in our society. With the increase of energy demand, the problem of energy shortage is becoming more and more serious. Manufacturing enterprises, as the largest consumers of energy, have to shoulder the heavy task of energy conservation. The production and processing process is the main consideration in the realization of energy conservation in manufacturing enterprises, and there are many ways to achieve energy conservation. However, there are few researches on how to achieve energy saving by means of scheduling. This paper takes the production process of forging industry as the research object, studies its scheduling method, guarantees the high efficiency of production, considers the goal of energy saving, and conforms to the sustainable development strategy of our country. In this paper, the energy saving scheduling research is carried out around three links in forging process, namely, forging heating link, forging beating link and forging heat treatment link. In each link, the problems existing in this link are put forward. Mathematical models are established for these problems, and relevant algorithms or processing methods are adopted for these models. In the process of forging heating, the forging is first treated by clustering and clustering combination, and then a mathematical model aiming at heat preservation waiting time and charging capacity difference is established for heating furnace. An improved genetic algorithm is designed for the established mathematical model, and the result of the algorithm is analyzed with a practical case. The goal of energy saving is realized successfully. In the forging process, the problem of energy saving scheduling is briefly described as the matching problem between multiple forgings and multi-forging equipment. First of all, the scheduling model with the return number as the goal is established and solved. Then, the scheduling model with the forging time as the target is established and solved, which takes the result of the return as the target as the constraint. Taking the result of forging time as the constraint, the scheduling model with changing time as the target is established and solved. Finally, the mixed forging scheduling model is established with the result of changing time as the constraint. The corresponding solutions are designed, and the feasibility of the method is verified by practical cases. In the process of forging heat treatment, the waste heat treatment process is optimized at first, then the quenching and tempering models of waste heat are established for the quenching and tempering processes in the heat treatment links. At last, the solutions of the corresponding models are also put forward. The feasibility of the method is verified by practical cases. Finally, a forging production scheduling system for energy saving is designed and developed based on the scheduling method studied above. The overall design of the system is given, the function modules and database forms are designed, and the functions and operation flow of the system after development are shown.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG318
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉建軍;陳慶新;毛寧;朱鑫;;事件驅(qū)動(dòng)的并行多機(jī)模具熱處理生產(chǎn)調(diào)度[J];計(jì)算機(jī)集成制造系統(tǒng);2015年04期
2 朱柏青;盧海星;夏勇;李東波;;基于離散混合蛙跳算法的鍛件裝爐組合優(yōu)化模型研究[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2013年06期
3 朱柏青;丁小祥;李東波;;面向節(jié)能減排的多級(jí)自由鍛造生產(chǎn)調(diào)度[J];計(jì)算機(jī)集成制造系統(tǒng);2012年12期
4 張曉花;趙晉泉;陳星鶯;;節(jié)能減排下含風(fēng)電場(chǎng)多目標(biāo)機(jī)組組合建模及優(yōu)化[J];電力系統(tǒng)保護(hù)與控制;2011年17期
5 張焱;王艷;王磊;;基于原對(duì)偶解耦內(nèi)點(diǎn)法的節(jié)能減排多目標(biāo)動(dòng)態(tài)優(yōu)化調(diào)度研究[J];江蘇電機(jī)工程;2011年02期
6 尹勇;周祖德;龍毅宏;;綠色制造系統(tǒng)物資能耗模型及分析[J];組合機(jī)床與自動(dòng)化加工技術(shù);2009年09期
7 宮運(yùn)啟;呂民;王剛;付宜利;;基于知識(shí)的產(chǎn)品制造過(guò)程能耗的計(jì)算與預(yù)測(cè)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
8 馬福民;王堅(jiān);;面向企業(yè)能效評(píng)估的能源消耗過(guò)程建模方法研究[J];高技術(shù)通訊;2008年01期
9 寧樹(shù)實(shí);王偉;劉全利;;鋼鐵生產(chǎn)中的加熱爐優(yōu)化調(diào)度算法研究[J];控制與決策;2006年10期
10 孫文安;劉發(fā)久;孫克斌;張強(qiáng);;基于線性規(guī)劃的煉鋼裝爐最小成本控制[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2006年09期
,本文編號(hào):1867049
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1867049.html