燒結(jié)金剛石電極放電燒蝕磨削復(fù)合加工技術(shù)研究
本文選題:電火花加工 + 霧化燒蝕。 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:目前,電火花加工是難加工材料加工的一種主要方法,但是其加工能量受制于脈沖電源,蝕除效率很低。電火花誘導(dǎo)燒蝕是一種新出現(xiàn)的針對(duì)難加工材料加工的方法,利用電火花誘導(dǎo)工件活化,并利用氧氣與活化區(qū)域發(fā)生燃燒反應(yīng)快速蝕除材料,效率得到很大地提高。但是燒蝕反應(yīng)產(chǎn)生大量氧化物附著在加工表面,無(wú)法排出,影響后續(xù)放電,從而影響加工效率。為此,本文提出采用燒結(jié)金剛石材料作為電極,利用金剛石顆粒在線磨除修整氧化層,促使燒蝕反應(yīng)持續(xù)高效進(jìn)行。本文從以下幾個(gè)方面進(jìn)行了系統(tǒng)的研究:(1)提出了燒結(jié)金剛石電極霧化燒蝕磨削復(fù)合加工方法,構(gòu)建了試驗(yàn)系統(tǒng),F(xiàn)階段的沖液霧化燒蝕加工會(huì)使得反應(yīng)區(qū)域產(chǎn)生氧化層,其電阻率較高,且不易燃燒。采用燒結(jié)金剛石電極,電極金屬部分放電參與霧化燒蝕,金剛石磨粒在線修整氧化層,保證燒蝕反應(yīng)高效持續(xù)進(jìn)行。(2)提出了壓力作為檢測(cè)信號(hào)的伺服控制方法,設(shè)計(jì)并搭建了整個(gè)系統(tǒng)。具體包括壓力采集,信號(hào)處理,伺服驅(qū)動(dòng)以及基于LabVIEW的實(shí)時(shí)采集和監(jiān)測(cè)試驗(yàn)數(shù)據(jù)的串口通信。實(shí)現(xiàn)了PID控制方法,模糊控制方法和反比例控制方法,并進(jìn)行了對(duì)比實(shí)驗(yàn)。(3)建立了研究霧化燒蝕磨削復(fù)合加工模型。研究發(fā)現(xiàn)復(fù)合加工過(guò)程分為放電誘導(dǎo),高效燒蝕,磨粒磨削,電極修整四個(gè)階段。(4)開(kāi)展了模具鋼和高強(qiáng)鋼的工藝優(yōu)化試驗(yàn)。并研究了相關(guān)參數(shù)(峰值電流、脈沖寬度、脈沖間隔、電極轉(zhuǎn)速)對(duì)霧化燒蝕磨削復(fù)合加工特性的影響規(guī)律。對(duì)于模具鋼,復(fù)合加工方法能夠進(jìn)行高效穩(wěn)定加工,效率是銅電極電火花加工的6.3倍;相比于銅電極的燒蝕加工,效率提升了88%。對(duì)于高強(qiáng)鋼,復(fù)合加工的效率是霧化燒蝕的1.3倍,且復(fù)合加工的表面質(zhì)量要明顯好于霧化燒蝕加工的表面。
[Abstract]:At present, EDM is one of the main methods for machining refractory materials, but its processing energy is limited by pulse power supply, and the efficiency of etching is very low. EDM ablation is a new method for machining refractory materials. The efficiency is greatly improved by using EDM to induce the activation of workpieces and to rapidly erode the materials by combustion reaction between oxygen and activation region. However, the ablation reaction produces a large number of oxides attached to the machined surface, which can not be discharged, which affects the subsequent discharge, thus affecting the processing efficiency. In this paper, sintered diamond material is used as electrode, diamond particles are used to grind the oxide layer online, and the ablation reaction is carried out continuously and efficiently. In this paper, a systematic study on the following aspects has been carried out. (1) the method of atomization and ablation grinding of sintered diamond electrodes has been put forward, and the experimental system has been constructed. At the present stage, the oxidation layer is produced in the reaction region by the atomization and ablation of the liquid, and its resistivity is high, and it is not easy to burn. Using sintered diamond electrode, partial discharge of electrode metal to participate in atomization ablation, dressing oxide layer of diamond grain on line, ensuring the ablation reaction to be carried out efficiently and continuously.) the servo control method of pressure as detection signal is put forward. The whole system is designed and built. It includes pressure acquisition, signal processing, servo drive and serial port communication of real time acquisition and monitoring test data based on LabVIEW. The PID control method, fuzzy control method and inverse proportional control method are implemented. It was found that the process of composite machining was divided into four stages: discharge induction, high efficiency ablation, abrasive grinding and electrode dressing. The process optimization tests of die steel and high strength steel were carried out. The influence of parameters (peak current, pulse width, pulse interval, electrode speed) on the characteristics of atomized ablative grinding composite machining was studied. For die steel, the composite machining method can be processed efficiently and stably, and the efficiency is 6.3 times higher than that of copper electrode EDM. Compared with the ablation of copper electrode, the efficiency is increased 88%. For high strength steel, the efficiency of composite processing is 1.3 times that of atomization ablation, and the surface quality of composite processing is obviously better than that of atomized ablated surface.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG661
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊金發(fā);韓德印;盧成玉;趙天楊;劉陟;梁宏坤;;新型航空難加工材料加工技術(shù)探索[J];金屬加工(冷加工);2016年18期
2 劉仁體;邱明波;徐安陽(yáng);劉志東;田宗軍;;電火花誘導(dǎo)燒蝕磨削修整復(fù)合加工方法研究[J];電加工與模具;2016年04期
3 張志金;孫超;張明岐;崔海軍;張海龍;;航空制造領(lǐng)域精密電火花加工技術(shù)[J];航空制造技術(shù);2015年Z2期
4 李增強(qiáng);喻棟;孫濤;;振動(dòng)輔助切削加工技術(shù)研究現(xiàn)狀(英文)[J];機(jī)床與液壓;2015年12期
5 邱明波;凌加健;陳龍海;劉志東;;金剛石燒結(jié)電極放電燒蝕加工蝕除機(jī)理[J];機(jī)械工程學(xué)報(bào);2015年03期
6 尹純晶;劉志東;凌加健;邱明波;田宗軍;;電參數(shù)對(duì)鈦合金放電誘導(dǎo)可控?zé)g車(chē)削加工的影響研究[J];電加工與模具;2014年03期
7 王憶;;關(guān)于計(jì)算機(jī)控制系統(tǒng)中采樣周期的確定[J];信息與電腦(理論版);2014年05期
8 陳文安;劉志東;王祥志;王懷志;;放電誘導(dǎo)可控?zé)g及電火花修整成形加工基礎(chǔ)研究[J];中國(guó)機(jī)械工程;2013年13期
9 諸躍進(jìn);;電解電火花復(fù)合加工深孔試驗(yàn)研究[J];電加工與模具;2012年06期
10 張占龍;胡平;李敬雄;彭孟杰;周軍;黃嵩;唐炬;;均勻場(chǎng)域中工頻電場(chǎng)畸變效應(yīng)分析[J];重慶大學(xué)學(xué)報(bào);2012年04期
相關(guān)會(huì)議論文 前2條
1 邱明波;史t熢,
本文編號(hào):1846347
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1846347.html