TiSiN納米晶復(fù)合陶瓷材料合成、結(jié)構(gòu)表征及性能研究
本文選題:納米晶-非晶復(fù)合結(jié)構(gòu) + 力學(xué)性能; 參考:《武漢大學(xué)》2016年博士論文
【摘要】:切削加工行業(yè)正在向著高速干切削的方向發(fā)展,對刀具及其涂層材料提出了更高的使用要求。TiSiN材料具有高硬度、高熱穩(wěn)定性以及高耐蝕的特點(diǎn),在刀具上具有良好的應(yīng)用前景,但對其結(jié)構(gòu)、性能以及應(yīng)用的系統(tǒng)研究較少。本文采用多弧離子鍍(CAIP)技術(shù)在純氮?dú)夥障鲁练e了不同硅含量靶材的TiSiN單層及多層復(fù)合涂層,利用SEM、 XRD、XPS、TEM、AFM等測試方法表征涂層的結(jié)構(gòu),并利用納米壓痕技術(shù)與摩擦磨損儀器測試了涂層力學(xué)性能與摩擦性能,探討了TiSiN涂層工藝參數(shù)與性能之間的關(guān)系以及多層復(fù)合技術(shù)帶來的性能改善。其次,本文系統(tǒng)研究了TiSiN涂層的高溫抗氧化性能、抗腐蝕性能以及抗輻照性能,探討TiSiN作為抗氧化與防腐蝕保護(hù)涂層的應(yīng)用可能性并提出了TiSiN的輻照損傷機(jī)理。此外,本文利用SPS技術(shù)成功制備三維塊體TiSiN材料,提出了其結(jié)構(gòu)與硬度強(qiáng)化機(jī)理。主要結(jié)果如下:(1)采用CAIP技術(shù)在純氮?dú)庵?利用合金靶材作為硅源,成功制備高硬度、低摩擦的納米復(fù)合結(jié)構(gòu)TiSiN涂層;沉積過程中氮?dú)鈿鈮荷邥绊懙酵繉踊瘜W(xué)成分,并且晶體生長從(111)轉(zhuǎn)為(200),晶粒尺寸減小,涂層硬度與電阻值升高,摩擦系數(shù)也逐漸增大,當(dāng)?shù)獨(dú)馍叩?.5Pa之后,合金靶材出現(xiàn)中毒現(xiàn)象;另外,隨著靶材Si含量升高,涂層中Si含量隨之升高,最后趨于穩(wěn)定,涂層中TiN晶體由(111)生長方向逐漸轉(zhuǎn)向(200)方向,涂層晶粒尺寸由18.9nm逐漸減小到5.6nm,硬度值隨之增高,最大硬度40.7GPa在靶材Si含量為20 at.%時(shí)獲得;TiSiN多層復(fù)合涂層實(shí)驗(yàn)表明,多層涂層的層間界面能夠增強(qiáng)涂層硬度并且降低涂層摩擦系數(shù),沉積過程中轉(zhuǎn)速會改變涂層的調(diào)制周期,當(dāng)TiN/TiSiN涂層調(diào)制周期減小時(shí),TiN(111)晶面強(qiáng)度升高,當(dāng)調(diào)制周期為23nm時(shí),涂層獲得最大硬度3413HV,與最小摩擦系數(shù)0.49。(2)TiSiN涂層摩擦系數(shù)與磨損率均小于TiN涂層,涂層的摩擦系數(shù)以及磨損速率均隨著Si含量增加而升高;并且隨著Si含量升高,涂層摩擦方式由粘著磨損、磨屑磨損變?yōu)閱我坏哪バ寄p;TiSiN涂層具有優(yōu)異的抗腐蝕性能,并且隨著Si含量升高抗腐蝕性能增強(qiáng),長時(shí)間浸泡實(shí)驗(yàn)表明,涂層腐蝕主要是表面顆粒與孔洞優(yōu)先腐蝕,使得過渡層與基底被腐蝕,導(dǎo)致涂層與基體剝離;TiSiN涂層高溫氧化實(shí)驗(yàn)表明該涂層可以在800℃溫度使用,涂層中細(xì)小晶粒以及內(nèi)部致密的Si3N4非晶結(jié)構(gòu)能夠有效阻礙內(nèi)部合金元素以及外部氧元素的擴(kuò)散,延緩氧化進(jìn)行。(3)輻照條件下,TiSiN涂層出現(xiàn)了非晶化,由此導(dǎo)致涂層的硬度、楊氏模量的下降;并且研究發(fā)現(xiàn),TiSiN涂層抗輻照性能隨著涂層內(nèi)部晶粒減小而增強(qiáng),其原因在于涂層內(nèi)部納米晶-非晶界面能夠促進(jìn)輻照過程中間隙原子與空位點(diǎn)缺陷的融合,但存在一個(gè)最優(yōu)化的晶粒尺寸。(4)三維TiSiN塊體材料為納米TiN與非晶Si3N4復(fù)合結(jié)構(gòu),TiN納米晶被非晶Si3N4包圍,材料致密度、晶粒尺寸隨著非晶Si3N4比例升高而減小,硬度與楊氏模量則隨之升高,但當(dāng)Si3N4的晶粒細(xì)化與硬度強(qiáng)化都具有一個(gè)臨界比例。Si3N4在燒結(jié)過程中能夠阻擋原始納米TiN晶粒融合長大的過程以及晶體內(nèi)部位錯(cuò)運(yùn)動,因此帶來晶粒細(xì)化與硬度強(qiáng)化效果,但是Si3N4比例升高將會提高材料TiSiN所需的燒結(jié)溫度,因此導(dǎo)致材料內(nèi)部出現(xiàn)空隙,致密度下降,引起晶粒粗大與硬度降低。
[Abstract]:The cutting and machining industry is developing towards the direction of high speed dry cutting, and the higher use of cutting tools and their coating materials requires that.TiSiN materials have high hardness, high thermal stability and high corrosion resistance, and have good application prospects on the cutting tools. But there is less research on the structure, energy and application of the materials. TiSiN monolayer and multilayer composite coating with different silicon content were deposited by arc ion plating (CAIP) technology in pure nitrogen atmosphere. The coating structure was characterized by SEM, XRD, XPS, TEM, AFM and other testing methods. The mechanical properties and friction properties of the coating were tested by nano indentation and friction and wear instruments. The process parameters of TiSiN coating were discussed. The relationship between performance and the performance improvement of multi-layer composite technology is improved. Secondly, the high temperature oxidation resistance, corrosion resistance and radiation resistance of TiSiN coating are systematically studied. The application possibility of TiSiN as antioxidation and corrosion protection coating is discussed and the radiation damage mechanism of TiSiN is proposed. In addition, this paper uses SPS The structure and hardness strengthening mechanism of 3D block TiSiN materials are successfully prepared by technology. The main results are as follows: (1) using CAIP technology in pure nitrogen and using alloy target as the silicon source, the nano composite TiSiN coating with high hardness and low friction is successfully prepared. The increase of nitrogen gas pressure in the process of deposition will affect the chemical composition of the coating. And the crystal growth changed from (111) to (200), the grain size decreased, the hardness and resistance value of the coating increased and the friction coefficient increased gradually. When nitrogen increased to 2.5Pa, the alloy target was poisoned. In addition, the content of Si in the coating increased with the increase of the target Si content, and finally tended to be stable. The TiN crystal in the coating was produced by (111). In the direction of gradually turning (200), the grain size of the coating gradually decreases from 18.9nm to 5.6nm, the hardness value increases and the maximum hardness 40.7GPa is obtained at the target Si content of 20 at.%. The TiSiN multilayer composite coating experiment shows that the interlayer interface of multilayer coating can enhance the hardness of the coating and reduce the friction coefficient of the coating. When the modulation period of the coating is changed, when the modulation period of the TiN/TiSiN coating is reduced, the strength of the TiN (111) crystal surface increases. When the modulation period is 23nm, the coating obtains the maximum hardness 3413HV. The friction coefficient and wear rate of the 0.49. (2) TiSiN coating are both less than the TiN coating, and the friction coefficient and wear rate of the coating increase with the Si content. And as the content of Si increases, the friction mode of the coating is worn from adhesive wear to the single abrasive wear. The TiSiN coating has excellent corrosion resistance, and the corrosion resistance of the coating is enhanced with the increase of Si content. The corrosion of the coating in a long time shows that the corrosion of the coating is mainly corrosion of the surface particles and holes. The layer and substrate are corroded, resulting in the stripping of the coating and the matrix, and the high temperature oxidation experiment of TiSiN coating shows that the coating can be used at 800 temperature. The fine grain in the coating and the dense Si3N4 amorphous structure can effectively obstruct the diffusion of the internal alloy elements and the external oxygen elements and delay the oxidation. (3) TiSiN coating under irradiation conditions. The crystallization of the coating leads to the hardness of the coating and the decline of the young's modulus, and it is found that the radiation resistance of the TiSiN coating increases with the decrease of the internal grain size of the coating. The reason is that the nanocrystalline amorphous interface in the coating can promote the fusion of the gap atoms and the vacancy point defects in the irradiation process, but there is an optimization. The grain size. (4) the three-dimensional TiSiN block material is the composite structure of the nano TiN and the amorphous Si3N4, and the TiN nanocrystals are surrounded by amorphous Si3N4, the density of the materials, the grain size decreases with the increase of the amorphous Si3N4 ratio, and the hardness and Young's modulus increase, but the grain refinement and hardness strengthening of Si3N4 have a critical proportion of.Si3N4 in burning. During the process, the process of grain fusion and growth of the original nanocrystalline TiN and the internal dislocation movement in the crystal bring about grain refinement and hardness enhancement, but the increase of Si3N4 ratio will increase the sintering temperature required for the material TiSiN, thus leading to the appearance of void in the material, the decrease of density, and the coarse grain and the decrease of hardness.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG174.4;TG71
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉先曙;仿蝸牛殼復(fù)合陶瓷材料[J];科技導(dǎo)報(bào);1995年05期
2 顧晉云;新型導(dǎo)電復(fù)合陶瓷材料[J];中外技術(shù)情報(bào);1995年09期
3 章天金,劉樹英,周東祥;LaCrO_3-NiMn_2O_4復(fù)合陶瓷材料結(jié)構(gòu)與性能的研究[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年02期
4 楊靖,傅宗國,蔣渝;透氣性復(fù)合陶瓷材料的改性研究[J];四川化工與腐蝕控制;2001年04期
5 李冬云,喬冠軍,金志浩;層狀復(fù)合陶瓷材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年01期
6 楊剛,艾云龍,羅軍明,薛峰;Al_2O_3-3Y-8Ce-TZP復(fù)合陶瓷材料燒結(jié)工藝研究[J];機(jī)械工程材料;2002年05期
7 王欣宇;焦國豪;李世普;楊艾玲;韋明;安江峰;;生物復(fù)合陶瓷材料CaSiO_3+B_2O_3+SrCO_3+CaF_2+ZnO/HA的制備及性能[J];稀有金屬材料與工程;2008年09期
8 李彬;鄧建新;趙樹椿;;Al_2O_3/ZrB_2/ZrO_2復(fù)合陶瓷材料的制備與性能[J];硅酸鹽學(xué)報(bào);2008年11期
9 楊學(xué)鋒;宋培龍;王守仁;楊麗穎;王硯軍;;自潤滑Al_2O_3/TiC/CaF_2復(fù)合陶瓷材料摩擦特性[J];人工晶體學(xué)報(bào);2012年06期
10 李培培;龍文元;徐升;;層狀復(fù)合陶瓷材料的研究現(xiàn)狀與發(fā)展趨勢[J];材料導(dǎo)報(bào);2012年S1期
相關(guān)會議論文 前10條
1 王雙;韓亞苓;張翠敏;李偉;孫泰禮;;燒結(jié)法制備鋼管內(nèi)襯復(fù)合陶瓷材料研究[A];納米材料與技術(shù)應(yīng)用進(jìn)展——第四屆全國納米材料會議論文集[C];2005年
2 佘正國;陳志剛;莫紀(jì)平;;ZrO_2-Al_2O_3-TiC復(fù)合陶瓷材料的制備及其力學(xué)性能[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學(xué)術(shù)會議論文集[C];1994年
3 姚春華;孫大志;林盛衛(wèi);曾華榮;瞿翠鳳;金綺華;;熱釋電復(fù)合陶瓷材料的熱滯現(xiàn)象[A];第三屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1998年
4 蘇雪筠;盧迪芬;陳楷;陳森鳳;;SiC板晶及其復(fù)合材料的制備及性能研究[A];94'全國結(jié)構(gòu)陶瓷、功能陶瓷、金屬/陶瓷封接學(xué)術(shù)會議論文集[C];1994年
5 安力;賈德昌;楊治華;;AlN-SiC復(fù)合陶瓷材料組織性能研究[A];2011中國材料研討會論文摘要集[C];2011年
6 ;論文展示 六、陶瓷基復(fù)合材料[A];第十四屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2006年
7 閔新民;許德華;葉春勇;;TiC/Al_2O_3與摻雜系列復(fù)合陶瓷材料的量子化學(xué)計(jì)算研究[A];2006年全國功能材料學(xué)術(shù)年會專輯[C];2006年
8 李喜坤;;常壓燒結(jié)制備Al_2O_3/TiCN復(fù)合陶瓷材料[A];中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集[C];2003年
9 修同平;王家成;劉茜;向長淑;潘裕柏;郭景坤;;介孔碳/石英復(fù)合陶瓷材料的吸波性能[A];中國空間科學(xué)學(xué)會空間材料專業(yè)委員會2009學(xué)術(shù)交流會論文集[C];2009年
10 李君;員文杰;鄧承繼;祝洪喜;;SiC原料顆粒級配對Si_3N_4結(jié)合SiC復(fù)合陶瓷材料的影響[A];中國硅酸鹽學(xué)會陶瓷分會2012年學(xué)術(shù)年會論文集[C];2012年
相關(guān)博士學(xué)位論文 前5條
1 錢良存;生物質(zhì)模板形貌的C/TiO_2復(fù)合材料及其TiO_2陶瓷[D];安徽農(nóng)業(yè)大學(xué);2015年
2 萬強(qiáng);TiSiN納米晶復(fù)合陶瓷材料合成、結(jié)構(gòu)表征及性能研究[D];武漢大學(xué);2016年
3 孫德明;Al_2O_3/Cr_3C_2多元復(fù)合陶瓷材料的制備、性能及應(yīng)用研究[D];山東大學(xué);2006年
4 王朝勝;天然高嶺土原位還原合成SiC_W/Al_2O_3復(fù)合陶瓷材料及機(jī)理研究[D];中南大學(xué);2011年
5 楊春;羥基磷灰石(HAP)材料制備及性能研究[D];哈爾濱工程大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 袁淑華;Bi_(1-x)La_xFe_(1-y)Ti_yO_3-YIG復(fù)合陶瓷材料的制備與性能研究[D];哈爾濱工業(yè)大學(xué);2015年
2 李丹;《生產(chǎn)復(fù)合陶瓷材料的方法》翻譯實(shí)踐報(bào)告[D];哈爾濱工業(yè)大學(xué);2015年
3 陳倫泰;氧化鋯復(fù)合陶瓷材料結(jié)構(gòu)與性能研究[D];武漢理工大學(xué);2008年
4 穆曉岑;ZrB_2-SiC/C復(fù)合陶瓷的制備及其性能研究[D];山東理工大學(xué);2012年
5 王媛婷;反應(yīng)燒結(jié)氮化硅基復(fù)合陶瓷材料的制備與性能研究[D];南京理工大學(xué);2006年
6 趙岳;細(xì)晶Si_3N_4/Al_2O_3復(fù)合陶瓷材料的制備及其力學(xué)性能的研究[D];合肥工業(yè)大學(xué);2002年
7 李軍;三維網(wǎng)狀金屬復(fù)合陶瓷材料界面相容性工藝研究[D];哈爾濱工業(yè)大學(xué);2007年
8 劉婷;微波調(diào)諧鈦酸鋇基復(fù)合陶瓷材料的研究[D];華中科技大學(xué);2009年
9 羅芳;Al_2O_3-TiN基復(fù)合陶瓷材料的制備及性能[D];哈爾濱工業(yè)大學(xué);2009年
10 談軍;B_4C/BN層狀復(fù)合陶瓷材料的制備與性能研究[D];景德鎮(zhèn)陶瓷學(xué)院;2008年
,本文編號:1824104
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1824104.html