納微米高硅涂層的制備及性能研究
本文選題:物理氣相沉積 + TiAlSiN ; 參考:《上海應用技術大學》2017年碩士論文
【摘要】:TiAlN是商品化并使用非常廣的一種單層涂層。在應用過程中容易因沖擊和振動而造成涂層脆性剝落,形成上述現(xiàn)象最重要的原因為涂層的膜結構及裂紋在擴展中無障礙或路徑太短。為改善TiAlN涂層性能,本文利用輝光放電及離子濺射技術,對TiAlN涂層進行Si元素摻雜制備TiAlSiN超硬涂層。結合計算機圖像處理技術對比分析了 TiAlN及TiAlSiN涂層的微觀組織結構。采用試驗方法對兩種涂層的物理性能進行定量的描述。采用計算機數值模擬技術、理論計算及實驗相結合的方法分析了無涂層刀具及不同涂層厚度刀具在相同條件下的切削性能。采用涂層刀具銑削SUS304不銹鋼,研究涂層的沖擊破壞機理,并對刀具的磨損失效形式及磨損機理進行分析。該研究對于指導涂層生產及應用具有極其重要的意義。獲得的主要結論如下:(1)在微觀下觀察涂層表面有白色顆粒、淺坑及針孔,涂層組織結構致密。TiAlSiN涂層中元素的原子百分含量分別為Ti (23.58)、Al (25.95)、Si (4.21)、N (46.26)。Si元素的摻雜改變了涂層的物相結構,促進了(200)晶體取向的生長。TiAlSiN涂層的微觀硬度為37.69GPa,結合力等級為HFI,摩擦系數峰值約為0.36。(2)隨著涂層厚度增加,刀具的切削力先降低后升高,切削溫度也是如此。在同樣的試驗條件下,4μm厚度的TiAlSiN涂層刀具在切削TC4及45鋼時,具有最小的切削力。3μm厚度的TiAlSiN涂層刀具在切削TC4及45鋼時,溫度最低。未涂層刀具的磨損量約為涂層刀具磨損量的2-3倍。(3)現(xiàn)場加工實驗表明,4μm厚度的TiAlSiN涂層的刀具在車削45鋼具有最小的車削力(498.4N)。切削測驗獲得的切削力值與模擬切削力值的變化趨向一致,切削測驗與模擬測驗的結果誤差在13%以內。(4)干式切削條件下,TiAlSiN涂層刀具的切削長度分別為TiAlN涂層刀具及未涂層刀具的1.5倍和5倍。TiAlSiN涂層刃具的失效模式有兩個不同階段,在表面涂層磨穿之前,刀具的主要承受磨料磨損。待涂層磨穿后,刀具的磨損狀態(tài)逐漸變?yōu)檎持p。TiAlSiN涂層更適用于不銹鋼的切削加工。
[Abstract]:TiAlN is a commercial and widely used monolayer coating. The brittleness spalling of the coating is easily caused by shock and vibration during application. The most important reason for the above phenomenon is that the membrane structure and crack of the coating are unobstructed or the path is too short. In order to improve the properties of TiAlN coatings, TiAlSiN superhard coatings were prepared by doping Si into TiAlN coatings by glow discharge and ion sputtering techniques. The microstructure of TiAlN and TiAlSiN coatings was analyzed by computer image processing. The physical properties of the two coatings were quantitatively described by means of test. The cutting performance of the uncoated tool and the tool with different coating thickness under the same conditions was analyzed by computer numerical simulation technique, theoretical calculation and experiment. The impact failure mechanism of coating was studied by milling SUS304 stainless steel with coated tool, and the wear failure mode and wear mechanism of the tool were analyzed. This study is of great significance for guiding the production and application of coatings. The main conclusions obtained are as follows: (1) White particles, shallow pits and pinholes are observed on the surface of the coating. The atomic percent content of the elements in the coating is Ti ~ (23.58) Al ~ (25. 95) Si ~ (4. 21) Si ~ (4. 21) N ~ (2 +) 46.26 ~ (2 +) 路Si, respectively. The phase structure of the coating has been changed. The microhardness of TiAlSiN coating is 37.69 GPA, the adhesion grade is HFI, and the peak friction coefficient is about 0.36. 2) with the increase of coating thickness, the cutting force of the cutting tool decreases first and then increases, and the cutting temperature is the same. Under the same experimental conditions, when TC4 and 45 steel are cut by TiAlSiN coated tool with 4 渭 m thickness, the temperature of TiAlSiN coated tool with minimum cutting force of 3. 3 渭 m is the lowest when TC4 and 45 steel are cut. The wear rate of uncoated tools is about 2-3 times as much as that of coated tools. The field machining experiments show that TiAlSiN coated tools with 4 渭 m thickness have the minimum turning force of 498.4 Nu in turning 45 steel. The value of cutting force obtained by cutting test tends to be consistent with the value of simulated cutting force. Under dry cutting conditions, the cutting length of TiAlSiN coated cutting tool is 1.5 times and 5 times of that of TiAlN coated tool and uncoated tool respectively. There are two different failure modes of TiAlSiN coated cutting tool. Before the surface coating is worn out, the tool is mainly subjected to abrasive wear. When the coating is worn out, the wear state of the tool becomes adhesive wear. TiAlSiN coating is more suitable for cutting stainless steel.
【學位授予單位】:上海應用技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG174.4;TG71
【參考文獻】
相關期刊論文 前10條
1 陳強;張而耕;張鎖懷;;TiAlN,TiAlSiN涂層的制備及其切削性能[J];表面技術;2017年01期
2 張而耕;王琴雪;周瓊;陳強;黃彪;;陰極電弧離子鍍TiAlSiN涂層的高溫抗氧化性能研究[J];陶瓷學報;2016年05期
3 張而耕;張體波;;涂層刀具的有限元分析[J];遼寧工程技術大學學報(自然科學版);2016年05期
4 張而耕;陳強;;基于計算機數值模擬的TiAlSiN涂層刀具切削性能研究[J];熱加工工藝;2016年08期
5 張而耕;陳強;;陰極電弧技術制備TiAlN與TiAlSiN涂層的性能研究[J];中國陶瓷;2015年11期
6 李偉;趙永生;劉平;馬鳳倉;劉新寬;陳小紅;何代華;王貝貝;康yN煒;;Si含量對TiAlSiN納米復合涂層的微觀結構和力學性能的影響[J];上海有色金屬;2014年02期
7 鞠洪博;喻利花;許俊華;;不同調制周期TiAlSiN/Mo_2N多層膜的微觀結構、力學和摩擦性能研究[J];真空科學與技術學報;2014年06期
8 彭笑;朱麗慧;Vineet Kumar;劉一雄;;PVD制備TiAlSiN涂層的研究進展[J];材料導報;2014年03期
9 王彥峰;李爭顯;華云峰;王寶云;杜繼紅;;C摻雜方式對TiAlSiN膜層組織及性能的影響[J];表面技術;2013年04期
10 時婧;裴志亮;宮駿;孫超;MUDERS C M;姜辛;;Si含量對電弧離子鍍Ti-Al-Si-N薄膜組織結構和力學性能的影響[J];金屬學報;2012年11期
相關碩士學位論文 前4條
1 孫華亮;基于計算機仿真的涂層刀具切削性能研究[D];機械科學研究總院;2013年
2 冉春華;TiN、TiAIN涂層刀具的切削性能對比研究[D];西南大學;2013年
3 閆建峰;ZrN涂層刀具的切削性能研究[D];山東大學;2008年
4 劉勝;鈦合金正交切削的溫度場和切削力仿真與試驗研究[D];南京航空航天大學;2007年
,本文編號:1816037
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1816037.html