直線導(dǎo)軌激光六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量方法與系統(tǒng)的研究
本文選題:六自由度誤差 + 外差干涉; 參考:《北京交通大學(xué)》2016年博士論文
【摘要】:直線軸或直線導(dǎo)軌是數(shù)控機(jī)床、加工中心和坐標(biāo)測(cè)量機(jī)等高精密加工和測(cè)量設(shè)備的重要組成部件,其制造和裝配誤差是影響上述設(shè)備加工和測(cè)量精度的主要因素。激光干涉儀是檢測(cè)直線導(dǎo)軌幾何運(yùn)動(dòng)誤差的常用儀器,但是其測(cè)量效率極低且無(wú)法滿足數(shù)控機(jī)床多誤差快速高精度測(cè)量的要求。因此,本領(lǐng)域亟待解決的問(wèn)題和發(fā)展趨勢(shì)是發(fā)展一種直線導(dǎo)軌六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量的方法及相應(yīng)的儀器設(shè)備,顯著提高數(shù)控機(jī)床的檢測(cè)效率和精度。為了解決上述問(wèn)題,本論文在綜合分析了國(guó)內(nèi)外相關(guān)研究的基礎(chǔ)上,依據(jù)小型化和高集成度的原則,提出了兩種可用于數(shù)控機(jī)床直線導(dǎo)軌幾何運(yùn)動(dòng)誤差檢測(cè)的六自由度誤差同時(shí)測(cè)量的方案,研制了相應(yīng)的測(cè)量?jī)x器,通過(guò)一系列實(shí)驗(yàn)驗(yàn)證了所研制的測(cè)量系統(tǒng)的可靠性和有效性。概括起來(lái),本學(xué)位論文的主要工作及創(chuàng)新有:1.提出了一種基于激光干涉和激光準(zhǔn)直結(jié)合的六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量的方法,分析了各自由度幾何誤差的測(cè)量原理并介紹了共路光線漂移測(cè)量和補(bǔ)償?shù)姆椒。根?jù)所提出的測(cè)量原理進(jìn)行了光路結(jié)構(gòu)、信號(hào)處理單元和測(cè)量軟件的設(shè)計(jì),研制了基于He-Ne雙頻激光器和單模光纖耦合的半導(dǎo)體激光器的測(cè)量系統(tǒng)。通過(guò)一系列實(shí)驗(yàn)對(duì)所研制的測(cè)量系統(tǒng)的性能進(jìn)行了評(píng)估,實(shí)驗(yàn)結(jié)果表明系統(tǒng)位置誤差、直線度誤差、俯仰角、偏擺角和滾轉(zhuǎn)角測(cè)量的標(biāo)準(zhǔn)偏差分別為0.8μm、0.5pm、 0.5"、0.5"、 1",在700mm的測(cè)量范圍內(nèi)重復(fù)性誤差的最大偏差分別為±0.6μm、 ±1.2μm.±1"、±0.8"、±1.8",證明了該系統(tǒng)能滿足精密數(shù)控機(jī)床的檢測(cè)要求。2.提出了一種基于外差干涉和激光光纖準(zhǔn)直結(jié)合的六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量方法。提出了基于單根保偏光纖傳輸雙頻激光的外差干涉位置誤差測(cè)量。根據(jù)所提出的測(cè)量原理進(jìn)行了光路結(jié)構(gòu)、硬件和軟件的設(shè)計(jì),研制了利用單根保偏光纖耦合的He-Ne雙頻激光器的測(cè)量系統(tǒng)。通過(guò)一系列實(shí)驗(yàn)對(duì)所研制的測(cè)量系統(tǒng)的性能進(jìn)行了評(píng)估,實(shí)驗(yàn)結(jié)果表明系統(tǒng)位置誤差、直線度誤差、俯仰角、偏擺角和滾轉(zhuǎn)角測(cè)量的穩(wěn)定性誤差分別為31.1nm、60nm、0.04"、0.03"、0.29",直線度誤差、俯仰角、偏擺角和滾轉(zhuǎn)角測(cè)量的重復(fù)性誤差分別為±0.15μm、±0.18”、±0.24”、±0.35”,證明了保偏光纖的應(yīng)用對(duì)提升系統(tǒng)測(cè)量精度和熱穩(wěn)定性的有效性,驗(yàn)證了該系統(tǒng)適用于高精密數(shù)控機(jī)床的檢測(cè)。3.討論了六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量系統(tǒng)的誤差構(gòu)成并詳細(xì)分析了直線度誤差測(cè)量的系統(tǒng)誤差。根據(jù)理論分析和基于控制變量法的標(biāo)定實(shí)驗(yàn)提出了一種修正測(cè)量分辨率變化的方法。利用棱鏡展開(kāi)原理和矩陣光線追跡建立了誤差補(bǔ)償模型,理論上消除了由制造誤差和安裝偏差、誤差串?dāng)_引入的系統(tǒng)誤差。分析了阿貝誤差的產(chǎn)生原因和作用效果,介紹了基于齊次變換矩陣的阿貝誤差的補(bǔ)償模型。搭建了基于激光準(zhǔn)直的直線度誤差測(cè)量裝置并與標(biāo)準(zhǔn)儀器進(jìn)行了對(duì)比,實(shí)驗(yàn)結(jié)果表明補(bǔ)償前后水平和豎直直線度誤差測(cè)量的對(duì)比偏差分別由1.8μm和2.8μm降至0.9μm和0.8μm,證明了所建立的誤差補(bǔ)償模型的有效性。
[Abstract]:Linear or linear guide rail is an important component of high precision machining and measuring equipment such as CNC machine tools, machining centers and coordinate measuring machines. The manufacturing and assembly errors are the main factors affecting the machining and measuring accuracy of the above equipment. The laser interferometer is a common instrument for measuring the geometric motion error of the linear guide, but its measurement efficiency It is very low and unable to meet the requirements of fast and accurate measurement of multi error of CNC machine tools. Therefore, the problem and trend of development in this field are to develop a method of simultaneous measurement of geometric motion error of six degrees of freedom of linear guide and corresponding instrument and equipment, and improve the detection efficiency and accuracy of the NC machine bed significantly. On the basis of comprehensive analysis of relevant research at home and abroad, this paper puts forward two schemes for simultaneous measurement of six degrees of freedom error for geometric kinematic error detection of linear guide rail of CNC machine tools, which can be used to measure the geometric motion error of numerical control machine tools. The corresponding measuring instrument is developed and the measurement developed is verified by a series of experiments. The main work and innovation of this dissertation are as follows: 1. a method of simultaneous measurement of geometric motion error of six degrees of freedom based on laser interference and laser collimation is proposed. The measurement principle of geometric errors of each degree of freedom is analyzed and the square of common path ray drift measurement and compensation is introduced. Method. Based on the proposed measurement principle, the optical path structure, signal processing unit and measurement software are designed. The measurement system of semiconductor laser based on He-Ne dual frequency laser and single mode fiber coupling is developed. The performance of the developed measurement system is evaluated through a series of experiments. The experimental results show that the system position is wrong. The standard deviations of the error, the straightness error, the pitching angle, the deflection angle and the roll angle are 0.8 mu m, 0.5pm, 0.5 ", 0.5", 1 ", the maximum deviation of the repeatability error in the range of 700mm is + 0.6 mu m, + 1.2 mu m. + 1", + 0.8 ", + 1.8", which proves that the system can meet the requirements of the precision NC machine tool and put forward a kind of outside based on the outside. A simultaneous measurement of six degrees of freedom geometric motion error combined with differential interference and laser collimation. A measurement of heterodyne interference position error based on Dan Genbao biased optical fiber transmission dual frequency laser is proposed. Based on the proposed measurement principle, the optical path structure, hardware and software are designed, and the He-Ne coupling of single polarization optical fiber is developed. The measurement system of a dual frequency laser. The performance of the developed measurement system is evaluated through a series of experiments. The experimental results show that the stability errors of the system position error, the straightness error, the pitching angle, the deflection angle and the roll angle are 31.1nm, 60NM, 0.04, 0.03, 0.29 ", straightness error, pitching angle, deflection angle and roll angle. The repeatability error of the measurement is + 0.15 mu m, + 0.18 ", + 0.24, + 0.35". It is proved that the application of the polarization preserving fiber is effective to the measurement accuracy and thermal stability of the lifting system. It is proved that the system is suitable for the detection of high precision CNC machine tools, and the error composition of the simultaneous measurement system of geometric motion error of six degrees of freedom is discussed and detailed. The systematic error of measurement of straightness error is analyzed. A method of correcting the change of measurement resolution is proposed based on the theoretical analysis and the calibration experiment based on the control variable method. The error compensation model is established by using the prism expansion principle and the ray tracing of the matrix, which is theoretically eliminated by the error and installation deviation and the error crosstalk. The cause and effect of A Bei error are analyzed. The compensation model of A Bei error based on homogeneous transformation matrix is introduced. A straightness error measuring device based on laser collimation is set up and compared with the standard instrument. The experimental results show that the measurement of horizontal and vertical straightness error before and after compensation deviation is biased. The difference is reduced from 1.8 m and 2.8 m to 0.9 m and 0.8 m respectively, which proves the validity of the established error compensation model.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王介心;洪邁生;;直行運(yùn)動(dòng)誤差在線測(cè)試方法[J];磨床與磨削;1986年03期
2 李錦西;;齒輪機(jī)床補(bǔ)償運(yùn)動(dòng)誤差的測(cè)試與診斷[J];磨床與磨削;1992年02期
3 唐樹(shù)君;機(jī)床直線運(yùn)動(dòng)誤差的測(cè)量方法研究[J];航空標(biāo)準(zhǔn)化;1984年02期
4 梁建成;;精密機(jī)床直線運(yùn)動(dòng)誤差在線檢測(cè)中的數(shù)學(xué)模型與參數(shù)選擇[J];磨床與磨削;1988年04期
5 虞文華;吳昭同;嚴(yán)拱標(biāo);;圓軌跡運(yùn)動(dòng)誤差測(cè)試儀的研制及其應(yīng)用[J];振動(dòng)、測(cè)試與診斷;1996年02期
6 甘玉芝,楊雪,徐建民,劉中生;車(chē)床直線運(yùn)動(dòng)誤差測(cè)試新技術(shù)的應(yīng)用研究[J];吉林工業(yè)大學(xué)學(xué)報(bào);1989年03期
7 賓鴻贊;陳卓寧;;機(jī)床運(yùn)動(dòng)誤差的微機(jī)控制[J];磨床與磨削;1987年04期
8 蘇恒,洪邁生,魏元雷,李自軍,熊詩(shī)波;機(jī)床直行部件運(yùn)動(dòng)誤差的在線測(cè)量[J];機(jī)械工程學(xué)報(bào);2003年03期
9 梁建成;王浩藩;潘仲明;;精密機(jī)床直線運(yùn)動(dòng)誤差的動(dòng)態(tài)測(cè)試系統(tǒng)[J];機(jī)械工業(yè)自動(dòng)化;1988年04期
10 崔道碧;座標(biāo)鏜床工作臺(tái)的運(yùn)動(dòng)誤差分析[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年06期
相關(guān)會(huì)議論文 前3條
1 周必磊;方寶東;尤偉;;衛(wèi)星雙向時(shí)間傳遞中的衛(wèi)星運(yùn)動(dòng)誤差研究[A];第二屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
2 白霞;洪文;毛士藝;;機(jī)載SAR系統(tǒng)平臺(tái)運(yùn)動(dòng)容差分配[A];加入WTO和中國(guó)科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對(duì)策(下冊(cè))[C];2002年
3 穆璽清;徐創(chuàng)文;;基于逐步回歸法的數(shù)控機(jī)床運(yùn)動(dòng)誤差分析[A];全國(guó)先進(jìn)制造技術(shù)高層論壇暨第七屆制造業(yè)自動(dòng)化與信息化技術(shù)研討會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前1條
1 崔存星;直線導(dǎo)軌激光六自由度幾何運(yùn)動(dòng)誤差同時(shí)測(cè)量方法與系統(tǒng)的研究[D];北京交通大學(xué);2016年
相關(guān)碩士學(xué)位論文 前6條
1 葉雪峰;基于車(chē)削端面形貌的車(chē)床綜合運(yùn)動(dòng)誤差辨識(shí)方法[D];浙江大學(xué);2015年
2 王世良;超精密車(chē)床主軸回轉(zhuǎn)誤差測(cè)試系統(tǒng)的研究[D];哈爾濱工業(yè)大學(xué);2016年
3 李坤武;數(shù)控機(jī)床測(cè)量系統(tǒng)故障分析與研究[D];東北石油大學(xué);2015年
4 周峰;機(jī)載合成孔徑雷達(dá)基于數(shù)據(jù)的運(yùn)動(dòng)誤差分析及補(bǔ)償研究[D];西安電子科技大學(xué);2005年
5 陳穎;大型雙驅(qū)動(dòng)玻璃切割機(jī)運(yùn)動(dòng)誤差分析及控制[D];北方工業(yè)大學(xué);2011年
6 王勝男;平臺(tái)運(yùn)動(dòng)誤差對(duì)TDI成像質(zhì)量影響的研究[D];南京理工大學(xué);2013年
,本文編號(hào):1801583
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1801583.html