TiAlN涂層強流脈沖電子束表面改性研究
本文選題:TiAlN + 強流脈沖電子束; 參考:《沈陽理工大學(xué)》2017年碩士論文
【摘要】:TiAlN涂層強流脈沖電子束(High Current Pulsed electron Beam,HCPEB)表面處理技術(shù)的應(yīng)用引起人們的重視,但對轟擊處理后涂層的成分、晶體結(jié)構(gòu)和應(yīng)力狀態(tài)的研究較少。本課題通過實驗分析TiAlN涂層HCPEB前后的組織結(jié)構(gòu)和力學(xué)性能的變化,并結(jié)合基于密度泛函理論的第一性原理計算研究涂層成分、晶體結(jié)構(gòu)和應(yīng)力狀態(tài)對材料力學(xué)性能的影響。對TiAlN涂層進行不同工藝參數(shù)的HCPEB處理,采用SEM對處理前后涂層的表面和斷面形貌進行觀察,并利用EDS對其進行成分分析。采用XRD對轟擊前后TiAlN涂層進行物相檢測,通過X射線外標(biāo)法測量轟擊前后TiAlN的晶格常數(shù),采用2θ—sin2ψ法對HCPEB轟擊前后的TiAlN涂層殘余應(yīng)力測量,運用納米壓痕技術(shù),對HCPEB轟擊前后的TiAlN涂層進行力學(xué)性能測量。結(jié)果發(fā)現(xiàn)經(jīng)HCPEB處理后涂層中的柱狀晶晶界變得模糊甚至消失,轟擊前后涂層中Ti、Al原子比基本不變;經(jīng)HCPEB處理后沒有新物相產(chǎn)生,對比未處理TiAlN涂層的晶格常數(shù)(4.1780?)經(jīng)HCPEB轟擊后晶格常數(shù)都不同程度的減小,處理后晶格常數(shù)變化從4.1627~4.1749?不等;未處理涂層的殘余壓應(yīng)力為243.77 MPa,經(jīng)HCPEB轟擊后TiAlN涂層的壓應(yīng)力在90.98~532.65 MPa之間變化,而且隨著HCPEB沉積總能量的增加呈現(xiàn)升高-降低-升高-降低-再升高的趨勢;未處理TiAlN涂層的納米硬度為28.174 GPa,經(jīng)HCPEB轟擊后,隨著電子束沉積能量的增加呈增加趨勢,工藝參數(shù)為11.6KV-80A-20 times時涂層的力學(xué)性能最好。第一性原理計算結(jié)果表明當(dāng)晶格常數(shù)在4.1627~4.1749?變化時時,NaCl型的Ti_4Al_4N_8可以穩(wěn)定存在。力學(xué)性能的計算結(jié)果表明,不同晶格常數(shù)下Ti_4Al_4N_8的楊氏模量變化規(guī)律與實驗結(jié)果一致,HCPEB轟擊導(dǎo)致TiAlN涂層晶格常數(shù)改變是材料的力學(xué)性能發(fā)生變化的主要原因。對Ti_3AlN_4模型的計算結(jié)果可知,穩(wěn)定態(tài)Ti_3AlN_4的彈性模量為421.77 GPa,當(dāng)Ti、Al原子出現(xiàn)空位時,彈性模量變化非常小,但N原子位置空位的出現(xiàn)使Ti_3AlN_4的彈性模量下降到82.92 GPa。
[Abstract]:The application of TiAlN coating strong current pulse electron beam (High Current Pulsed electron Beam, HCPEB) surface treatment technology has aroused people's attention. But there are few studies on the composition, crystal structure and stress state of the coating after bombardment. The change of microstructure and mechanical properties of TiAlN coating HCPEB before and after HCPEB is analyzed by experiment, and the conclusion is made. Based on the first principle of density functional theory, the influence of coating composition, crystal structure and stress state on the mechanical properties of the material is studied. The HCPEB treatment of TiAlN coating with different process parameters is carried out by using SEM to observe the surface and section morphology of the coating before and after treatment, and the composition of the coating is analyzed with EDS. The XRD pair is used. The TiAlN coating was detected before and after bombardment, and the lattice constant of TiAlN was measured before and after bombardment by X ray external standard. The residual stress of TiAlN coating before and after the bombardment of HCPEB was measured by 2 theta sin2 method, and the nano indentation technology was used to measure the mechanical properties of the TiAlN coating before and after the bombardment of HCPEB. The results were found in the coating after HCPEB treatment. The columnar crystal boundaries become blurred and even disappearing. The Ti and Al atoms in the coating are almost invariable before and after bombardment; no new phase is produced after HCPEB treatment. The lattice constant of the untreated TiAlN coating (4.1780?) decreases to varying degrees after the bombardment of HCPEB, and the lattice constant changes from 4.1627~4.1749? The residual compressive stress of the layer is 243.77 MPa, the compressive stress of the TiAlN coating changes between the 90.98~532.65 MPa after the HCPEB bombardment, and the tendency to increase with the increase of the total energy of HCPEB deposition - decrease - increase - decrease and then increase; the nano hardness of the untreated TiAlN coating is 28.174 GPa, after the HCPEB bombardment, the energy of the electron beam is deposited with the electron beam. The increase shows an increasing trend and the mechanical properties of the coating are the best when the process parameters are 11.6KV-80A-20 times. The first principle calculation results show that when the lattice constant changes in 4.1627~4.1749? NaCl type Ti_4Al_4N_8 can be stable. The calculation results of mechanical properties show that the young's modulus change of Ti_4Al_4N_8 under the different lattice constants. It is consistent with the experimental results that the change of the lattice constant of the TiAlN coating is the main reason for the change of the mechanical properties of the material by HCPEB bombardment. The calculation results of the Ti_3AlN_4 model show that the modulus of elasticity of the stable state Ti_3AlN_4 is 421.77 GPa. When Ti, the Al atom appears vacant, the modulus of elasticity changes very little, but the appearance of the position of the N atom position is caused by the presence of the N atom position. The modulus of elasticity of Ti_3AlN_4 drops to 82.92 GPa.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG661
【參考文獻】
相關(guān)期刊論文 前10條
1 徐培利;劉戰(zhàn)強;;微噴砂后處理工藝對涂層刀具性能的影響規(guī)律[J];現(xiàn)代制造工程;2015年07期
2 李才;郝勝智;;強流脈沖電子束輻照AZ91鎂合金表面組織及磨損性能研究[J];真空科學(xué)與技術(shù)學(xué)報;2015年03期
3 史子木;張在強;牛麗媛;蘇一暢;季樂;李光玉;關(guān)慶豐;;強流脈沖電子束作用下AISI 304L奧氏體不銹鋼的微觀結(jié)構(gòu)與腐蝕性能[J];高壓物理學(xué)報;2014年05期
4 婁長勝;蘆馨;金光;高景龍;張罡;;強流脈沖電子束表面處理對TiAlN涂層刀具的組織結(jié)構(gòu)及性能的影響[J];材料工程;2014年08期
5 郝勝智;徐洋;張悅;董闖;;強流脈沖電子束輻照YG6X硬質(zhì)合金表層組織與性能研究[J];真空科學(xué)與技術(shù)學(xué)報;2014年01期
6 蔡杰;季樂;楊盛志;張在強;劉世超;李艷;王曉彤;關(guān)慶豐;;強流脈沖電子束作用下金屬鋯的微觀結(jié)構(gòu)與應(yīng)力狀態(tài)[J];物理學(xué)報;2013年15期
7 韓振威;林有希;;TiAlN涂層刀具研究新進展[J];組合機床與自動化加工技術(shù);2012年06期
8 羅自成;王均濤;;TiAlN刀具涂層影響因素的研究[J];熱加工工藝;2012年02期
9 王海洋;曹傳亮;張祥林;肖祥芷;;不同厚度TiN和TiAlN涂層殘留應(yīng)力分析[J];模具工業(yè);2011年11期
10 徐銀超;陳康華;王社權(quán);祝昌軍;謝燦強;陳響明;;TiN和TiAlN涂層硬質(zhì)合金的氧化和切削性能[J];粉末冶金材料科學(xué)與工程;2011年03期
相關(guān)博士學(xué)位論文 前1條
1 徐芳君;強流脈沖電子束輻照M50鋼表層組織與性能研究[D];哈爾濱工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前6條
1 張堯;鈦合金切削用硬質(zhì)合金刀具強流脈沖電子束表面改性研究[D];沈陽理工大學(xué);2015年
2 劉崇林;硬質(zhì)合金刀具離子鍍TiAlN鍍層結(jié)構(gòu)及性能研究[D];江蘇科技大學(xué);2014年
3 信振洋;TiAlN、TiAlSiN結(jié)構(gòu)和力學(xué)性質(zhì)的第一性原理研究[D];內(nèi)蒙古科技大學(xué);2013年
4 李玉東;TiAlN薄膜的合成、計算和性能研究[D];上海大學(xué);2013年
5 王存霞;強流脈沖電子束輻照ZrO_2陶瓷涂層表面改性[D];大連理工大學(xué);2011年
6 陳蓓蓓;(Ti,,Al)N薄膜力學(xué)性能及微觀組織結(jié)構(gòu)的研究[D];上海交通大學(xué);2007年
本文編號:1800826
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1800826.html